Question
Simplify the expression
312x4−7x3−10x2
Evaluate
312x2−7x−10×x2
Multiply the terms
3(12x2−7x−10)x2
Multiply the terms
3x2(12x2−7x−10)
Solution
More Steps

Evaluate
x2(12x2−7x−10)
Apply the distributive property
x2×12x2−x2×7x−x2×10
Multiply the terms
More Steps

Evaluate
x2×12x2
Use the commutative property to reorder the terms
12x2×x2
Multiply the terms
12x4
12x4−x2×7x−x2×10
Multiply the terms
More Steps

Evaluate
x2×7x
Use the commutative property to reorder the terms
7x2×x
Multiply the terms
7x3
12x4−7x3−x2×10
Use the commutative property to reorder the terms
12x4−7x3−10x2
312x4−7x3−10x2
Show Solution

Find the roots
x1=−32,x2=0,x3=45
Alternative Form
x1=−0.6˙,x2=0,x3=1.25
Evaluate
312x2−7x−10×x2
To find the roots of the expression,set the expression equal to 0
312x2−7x−10×x2=0
Multiply the terms
More Steps

Multiply the terms
312x2−7x−10×x2
Multiply the terms
3(12x2−7x−10)x2
Multiply the terms
3x2(12x2−7x−10)
3x2(12x2−7x−10)=0
Simplify
x2(12x2−7x−10)=0
Separate the equation into 2 possible cases
x2=012x2−7x−10=0
The only way a power can be 0 is when the base equals 0
x=012x2−7x−10=0
Solve the equation
More Steps

Evaluate
12x2−7x−10=0
Factor the expression
More Steps

Evaluate
12x2−7x−10
Rewrite the expression
12x2+(−15+8)x−10
Calculate
12x2−15x+8x−10
Rewrite the expression
3x×4x−3x×5+2×4x−2×5
Factor out 3x from the expression
3x(4x−5)+2×4x−2×5
Factor out 2 from the expression
3x(4x−5)+2(4x−5)
Factor out 4x−5 from the expression
(3x+2)(4x−5)
(3x+2)(4x−5)=0
When the product of factors equals 0,at least one factor is 0
3x+2=04x−5=0
Solve the equation for x
More Steps

Evaluate
3x+2=0
Move the constant to the right-hand side and change its sign
3x=0−2
Removing 0 doesn't change the value,so remove it from the expression
3x=−2
Divide both sides
33x=3−2
Divide the numbers
x=3−2
Use b−a=−ba=−ba to rewrite the fraction
x=−32
x=−324x−5=0
Solve the equation for x
More Steps

Evaluate
4x−5=0
Move the constant to the right-hand side and change its sign
4x=0+5
Removing 0 doesn't change the value,so remove it from the expression
4x=5
Divide both sides
44x=45
Divide the numbers
x=45
x=−32x=45
x=0x=−32x=45
Solution
x1=−32,x2=0,x3=45
Alternative Form
x1=−0.6˙,x2=0,x3=1.25
Show Solution
