Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
x∈(−∞,−1.039317)∪(0,0.083924)∪(0.955393,+∞)
Evaluate
(12x−1)(3x×1)<1×(6x2)2
Remove the parentheses
(12x−1)×3x×1<1×(6x2)2
Multiply the terms
More Steps

Evaluate
(12x−1)×3x×1
Any expression multiplied by 1 remains the same
(12x−1)×3x
Multiply the first two terms
3(12x−1)x
3(12x−1)x<1×(6x2)2
Multiply the terms
More Steps

Evaluate
1×(6x2)2
Any expression multiplied by 1 remains the same
(6x2)2
To raise a product to a power,raise each factor to that power
62(x2)2
Evaluate the power
36(x2)2
Evaluate the power
More Steps

Evaluate
(x2)2
Multiply the exponents
x2×2
Multiply the terms
x4
36x4
3(12x−1)x<36x4
Move the expression to the left side
3(12x−1)x−36x4<0
Expand the expression
More Steps

Calculate
3(12x−1)x
Simplify
More Steps

Evaluate
3(12x−1)
Apply the distributive property
3×12x−3×1
Multiply the numbers
36x−3×1
Any expression multiplied by 1 remains the same
36x−3
(36x−3)x
Apply the distributive property
36x×x−3x
Multiply the terms
36x2−3x
36x2−3x−36x4<0
Rewrite the expression
36x2−3x−36x4=0
Factor the expression
3x(12x−1−12x3)=0
Divide both sides
x(12x−1−12x3)=0
Separate the equation into 2 possible cases
x=012x−1−12x3=0
Solve the equation
x=0x≈−1.039317x≈0.083924x≈0.955393
Determine the test intervals using the critical values
x<−1.039317−1.039317<x<00<x<0.0839240.083924<x<0.955393x>0.955393
Choose a value form each interval
x1=−2x2=−1x3≈0.041962x4≈0.519659x5=2
To determine if x<−1.039317 is the solution to the inequality,test if the chosen value x=−2 satisfies the initial inequality
More Steps

Evaluate
3(12(−2)−1)(−2)<36(−2)4
Simplify
More Steps

Evaluate
3(12(−2)−1)(−2)
Multiply the numbers
3(−24−1)(−2)
Subtract the numbers
3(−25)(−2)
Rewrite the expression
3×25×2
Multiply the terms
75×2
Multiply the numbers
150
150<36(−2)4
Multiply the terms
More Steps

Evaluate
36(−2)4
Evaluate the power
36×16
Multiply the numbers
576
150<576
Check the inequality
true
x<−1.039317 is the solutionx2=−1x3≈0.041962x4≈0.519659x5=2
To determine if −1.039317<x<0 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
3(12(−1)−1)(−1)<36(−1)4
Simplify
More Steps

Evaluate
3(12(−1)−1)(−1)
Simplify
3(−12−1)(−1)
Subtract the numbers
3(−13)(−1)
Any expression multiplied by 1 remains the same
3×13
Multiply the numbers
39
39<36(−1)4
Simplify
More Steps

Evaluate
36(−1)4
Evaluate the power
36×1
Any expression multiplied by 1 remains the same
36
39<36
Check the inequality
false
x<−1.039317 is the solution−1.039317<x<0 is not a solutionx3≈0.041962x4≈0.519659x5=2
To determine if 0<x<0.083924 is the solution to the inequality,test if the chosen value x≈0.041962 satisfies the initial inequality
More Steps

Evaluate
3(12×0.041962−1)×0.041962<36×0.0419624
Simplify
More Steps

Evaluate
3(12×0.041962−1)×0.041962
Multiply the numbers
3(0.503547−1)×0.041962
Subtract the numbers
3(−0.496453)×0.041962
Rewrite the expression
−3×0.496453×0.041962
Multiply the terms
−0.062497
−0.062497<36×0.0419624
Simplify
−0.062497<36×3.100515×10−6
Calculate
−0.062497<0.000112
Check the inequality
true
x<−1.039317 is the solution−1.039317<x<0 is not a solution0<x<0.083924 is the solutionx4≈0.519659x5=2
To determine if 0.083924<x<0.955393 is the solution to the inequality,test if the chosen value x≈0.519659 satisfies the initial inequality
More Steps

Evaluate
3(12×0.519659−1)×0.519659<36×0.5196594
Simplify
More Steps

Evaluate
3(12×0.519659−1)×0.519659
Multiply the numbers
3(6.235905−1)×0.519659
Subtract the numbers
3×5.235905×0.519659
Multiply the terms
15.707715×0.519659
Multiply the numbers
8.162651
8.162651<36×0.5196594
Multiply the terms
More Steps

Evaluate
36×0.5196594
Evaluate the power
36×0.072924
Multiply the numbers
2.625279
8.162651<2.625279
Check the inequality
false
x<−1.039317 is the solution−1.039317<x<0 is not a solution0<x<0.083924 is the solution0.083924<x<0.955393 is not a solutionx5=2
To determine if x>0.955393 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
3(12×2−1)×2<36×24
Simplify
More Steps

Evaluate
3(12×2−1)×2
Multiply the numbers
3(24−1)×2
Subtract the numbers
3×23×2
Multiply the terms
69×2
Multiply the numbers
138
138<36×24
Multiply the terms
More Steps

Evaluate
36×24
Evaluate the power
36×16
Multiply the numbers
576
138<576
Check the inequality
true
x<−1.039317 is the solution−1.039317<x<0 is not a solution0<x<0.083924 is the solution0.083924<x<0.955393 is not a solutionx>0.955393 is the solution
Solution
x∈(−∞,−1.039317)∪(0,0.083924)∪(0.955393,+∞)
Show Solution
