Question
Solve the equation
m1=58×cos(10π)+58×sin(10π)×im2=58×im3=−58×cos(10π)+58×sin(109π)×im4=58×cos(1013π)+58×sin(1013π)×im5=58×cos(1017π)+58×sin(1017π)×i
Alternative Form
m1=58×cos(18∘)+58×sin(18∘)×im2=58×im3=−58×cos(18∘)+58×sin(162∘)×im4=58×cos(234∘)+58×sin(234∘)×im5=58×cos(306∘)+58×sin(306∘)×i
Alternative Form
m1≈1.441532+0.468382im2≈1.515717im3≈−1.441532+0.468382im4≈−0.890916−1.22624im5≈0.890916−1.22624i
Evaluate
(13i−4)m5−7i=i
Calculate
(−4+13i)m5−7i=i
Move the constant to the right-hand side and change its sign
(−4+13i)m5=i+7i
Add the numbers
More Steps

Evaluate
i+7i
Collect like terms
(1+7)i
Calculate
8i
(−4+13i)m5=8i
Simplify
m=58i
Rewrite the complex number in polar form
More Steps

Evaluate
8i
Determine the modulus and the argument of the complex number
r=02+82θ=arctan(08)
Calculate
More Steps

Evaluate
02+82
Calculate
0+82
Add the numbers
64
Write the number in exponential form with the base of 8
82
Reduce the index of the radical and exponent with 2
8
r=8θ=arctan(08)
Substitute the given values into the formula r(cosθ+isinθ)
8(cos(2π)+isin(2π))
m=58(cos(2π)+isin(2π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
m=58×(cos(52π+2kπ)+isin(52π+2kπ))
Since n=5,substitute k=0,1,2,3,4 into the expression
m1=58×(cos(52π+2×0×π)+isin(52π+2×0×π))m2=58×(cos(52π+2×1×π)+isin(52π+2×1×π))m3=58×(cos(52π+2×2π)+isin(52π+2×2π))m4=58×(cos(52π+2×3π)+isin(52π+2×3π))m5=58×(cos(52π+2×4π)+isin(52π+2×4π))
Calculate
More Steps

Evaluate
52π+2×0×π
Any expression multiplied by 0 equals 0
52π+0
Removing 0 doesn't change the value,so remove it from the expression
52π
Rewrite the expression
2π×51
To multiply the fractions,multiply the numerators and denominators separately
2×5π
Multiply the numbers
10π
m1=58×(cos(10π)+isin(10π))m2=58×(cos(52π+2×1×π)+isin(52π+2×1×π))m3=58×(cos(52π+2×2π)+isin(52π+2×2π))m4=58×(cos(52π+2×3π)+isin(52π+2×3π))m5=58×(cos(52π+2×4π)+isin(52π+2×4π))
Calculate
More Steps

Evaluate
52π+2×1×π
Multiply the terms
52π+2π
Calculate
More Steps

Evaluate
2π+2π
Reduce fractions to a common denominator
2π+22π×2
Write all numerators above the common denominator
2π+2π×2
Multiply the terms
2π+4π
Add the numbers
25π
525π
Rewrite the expression
25π×51
Reduce the numbers
2π×1
Multiply the numbers
2π
m1=58×(cos(10π)+isin(10π))m2=58×(cos(2π)+isin(2π))m3=58×(cos(52π+2×2π)+isin(52π+2×2π))m4=58×(cos(52π+2×3π)+isin(52π+2×3π))m5=58×(cos(52π+2×4π)+isin(52π+2×4π))
Calculate
More Steps

Evaluate
52π+2×2π
Multiply the terms
52π+4π
Calculate
More Steps

Evaluate
2π+4π
Reduce fractions to a common denominator
2π+24π×2
Write all numerators above the common denominator
2π+4π×2
Multiply the terms
2π+8π
Add the numbers
29π
529π
Rewrite the expression
29π×51
To multiply the fractions,multiply the numerators and denominators separately
2×59π
Multiply the numbers
109π
m1=58×(cos(10π)+isin(10π))m2=58×(cos(2π)+isin(2π))m3=58×(cos(109π)+isin(109π))m4=58×(cos(52π+2×3π)+isin(52π+2×3π))m5=58×(cos(52π+2×4π)+isin(52π+2×4π))
Calculate
More Steps

Evaluate
52π+2×3π
Multiply the terms
52π+6π
Calculate
More Steps

Evaluate
2π+6π
Reduce fractions to a common denominator
2π+26π×2
Write all numerators above the common denominator
2π+6π×2
Multiply the terms
2π+12π
Add the numbers
213π
5213π
Rewrite the expression
213π×51
To multiply the fractions,multiply the numerators and denominators separately
2×513π
Multiply the numbers
1013π
m1=58×(cos(10π)+isin(10π))m2=58×(cos(2π)+isin(2π))m3=58×(cos(109π)+isin(109π))m4=58×(cos(1013π)+isin(1013π))m5=58×(cos(52π+2×4π)+isin(52π+2×4π))
Calculate
More Steps

Evaluate
52π+2×4π
Multiply the terms
52π+8π
Calculate
More Steps

Evaluate
2π+8π
Reduce fractions to a common denominator
2π+28π×2
Write all numerators above the common denominator
2π+8π×2
Multiply the terms
2π+16π
Add the numbers
217π
5217π
Rewrite the expression
217π×51
To multiply the fractions,multiply the numerators and denominators separately
2×517π
Multiply the numbers
1017π
m1=58×(cos(10π)+isin(10π))m2=58×(cos(2π)+isin(2π))m3=58×(cos(109π)+isin(109π))m4=58×(cos(1013π)+isin(1013π))m5=58×(cos(1017π)+isin(1017π))
Solution
m1=58×cos(10π)+58×sin(10π)×im2=58×im3=−58×cos(10π)+58×sin(109π)×im4=58×cos(1013π)+58×sin(1013π)×im5=58×cos(1017π)+58×sin(1017π)×i
Alternative Form
m1=58×cos(18∘)+58×sin(18∘)×im2=58×im3=−58×cos(18∘)+58×sin(162∘)×im4=58×cos(234∘)+58×sin(234∘)×im5=58×cos(306∘)+58×sin(306∘)×i
Alternative Form
m1≈1.441532+0.468382im2≈1.515717im3≈−1.441532+0.468382im4≈−0.890916−1.22624im5≈0.890916−1.22624i
Show Solution
