Question
Simplify the expression
−790d−24d2
Evaluate
158d(−5)−24d×d
Multiply the numbers
More Steps

Evaluate
158(−5)
Multiplying or dividing an odd number of negative terms equals a negative
−158×5
Multiply the numbers
−790
−790d−24d×d
Solution
−790d−24d2
Show Solution

Factor the expression
−2d(395+12d)
Evaluate
158d(−5)−24d×d
Multiply the numbers
More Steps

Evaluate
158(−5)
Multiplying or dividing an odd number of negative terms equals a negative
−158×5
Multiply the numbers
−790
Evaluate
−790d
−790d−24d×d
Multiply the terms
−790d−24d2
Rewrite the expression
−2d×395−2d×12d
Solution
−2d(395+12d)
Show Solution

Find the roots
d1=−12395,d2=0
Alternative Form
d1=−32.916˙,d2=0
Evaluate
(158d)(−5)−24d×d
To find the roots of the expression,set the expression equal to 0
(158d)(−5)−24d×d=0
Multiply the terms
158d(−5)−24d×d=0
Multiply the numbers
More Steps

Evaluate
158(−5)
Multiplying or dividing an odd number of negative terms equals a negative
−158×5
Multiply the numbers
−790
−790d−24d×d=0
Multiply the terms
−790d−24d2=0
Factor the expression
More Steps

Evaluate
−790d−24d2
Rewrite the expression
−2d×395−2d×12d
Factor out −2d from the expression
−2d(395+12d)
−2d(395+12d)=0
When the product of factors equals 0,at least one factor is 0
−2d=0395+12d=0
Solve the equation for d
More Steps

Evaluate
−2d=0
Change the signs on both sides of the equation
2d=0
Rewrite the expression
d=0
d=0395+12d=0
Solve the equation for d
More Steps

Evaluate
395+12d=0
Move the constant to the right-hand side and change its sign
12d=0−395
Removing 0 doesn't change the value,so remove it from the expression
12d=−395
Divide both sides
1212d=12−395
Divide the numbers
d=12−395
Use b−a=−ba=−ba to rewrite the fraction
d=−12395
d=0d=−12395
Solution
d1=−12395,d2=0
Alternative Form
d1=−32.916˙,d2=0
Show Solution
