Question
Simplify the expression
307−38b+b2
Evaluate
(18−b)2−2b−17
Expand the expression
324−36b+b2−2b−17
Subtract the numbers
307−36b+b2−2b
Solution
More Steps

Evaluate
−36b−2b
Collect like terms by calculating the sum or difference of their coefficients
(−36−2)b
Subtract the numbers
−38b
307−38b+b2
Show Solution

Find the roots
b1=19−36,b2=19+36
Alternative Form
b1≈11.651531,b2≈26.348469
Evaluate
(18−b)2−2b−17
To find the roots of the expression,set the expression equal to 0
(18−b)2−2b−17=0
Subtract the terms
More Steps

Simplify
(18−b)2−2b
Expand the expression
324−36b+b2−2b
Subtract the terms
More Steps

Evaluate
−36b−2b
Collect like terms by calculating the sum or difference of their coefficients
(−36−2)b
Subtract the numbers
−38b
324−38b+b2
324−38b+b2−17=0
Subtract the numbers
307−38b+b2=0
Rewrite in standard form
b2−38b+307=0
Substitute a=1,b=−38 and c=307 into the quadratic formula b=2a−b±b2−4ac
b=238±(−38)2−4×307
Simplify the expression
More Steps

Evaluate
(−38)2−4×307
Multiply the numbers
(−38)2−1228
Rewrite the expression
382−1228
Evaluate the power
1444−1228
Subtract the numbers
216
b=238±216
Simplify the radical expression
More Steps

Evaluate
216
Write the expression as a product where the root of one of the factors can be evaluated
36×6
Write the number in exponential form with the base of 6
62×6
The root of a product is equal to the product of the roots of each factor
62×6
Reduce the index of the radical and exponent with 2
66
b=238±66
Separate the equation into 2 possible cases
b=238+66b=238−66
Simplify the expression
More Steps

Evaluate
b=238+66
Divide the terms
More Steps

Evaluate
238+66
Rewrite the expression
22(19+36)
Reduce the fraction
19+36
b=19+36
b=19+36b=238−66
Simplify the expression
More Steps

Evaluate
b=238−66
Divide the terms
More Steps

Evaluate
238−66
Rewrite the expression
22(19−36)
Reduce the fraction
19−36
b=19−36
b=19+36b=19−36
Solution
b1=19−36,b2=19+36
Alternative Form
b1≈11.651531,b2≈26.348469
Show Solution
