Question
Calculate the value
106+24
Alternative Form
≈48.494897
Evaluate
(1−(63))22(63)
Remove the unnecessary parentheses
(1−(63))22×63
Remove the unnecessary parentheses
(1−63)22×63
Subtract the numbers
More Steps

Simplify
1−63
Calculate
More Steps

Evaluate
−63
Multiply by the Conjugate
−6×636
Calculate
−636
Reduce the fraction
−26
1−26
Reduce fractions to a common denominator
22−26
Write all numerators above the common denominator
22−6
(22−6)22×63
Multiply the numbers
More Steps

Evaluate
2×63
Multiply the numbers
62×3
Multiply the numbers
66
(22−6)266
Evaluate the power
More Steps

Calculate
(22−6)2
To raise a fraction to a power,raise the numerator and denominator to that power
22(2−6)2
Evaluate the power
More Steps

Evaluate
(2−6)2
Use (a−b)2=a2−2ab+b2 to expand the expression
22−2×26+(6)2
Calculate
4−46+6
Add the numbers
10−46
2210−46
Evaluate the power
410−46
Reduce the fraction
25−26
25−2666
Multiply by the reciprocal
66×5−262
To multiply the fractions,multiply the numerators and denominators separately
6×(5−26)6×2
Multiply the numbers
6×(5−26)12
Multiply the numbers
More Steps

Evaluate
6×(5−26)
Apply the distributive property
6×5−6×26
Multiply the numbers
56−6×26
Multiply the numbers
More Steps

Evaluate
6×26
When a square root of an expression is multiplied by itself,the result is that expression
6×2
Multiply the numbers
12
56−12
56−1212
Multiply by the Conjugate
(56−12)(56+12)12(56+12)
Multiply the numbers
More Steps

Rewrite the expression
(56−12)(56+12)
Use (a−b)(a+b)=a2−b2 to simplify the product
(56)2−122
Evaluate the power
More Steps

Evaluate
(56)2
Evaluate the power
25×6
Multiply the numbers
150
150−122
Evaluate the power
150−144
Subtract the numbers
6
612(56+12)
Factor the expression
62(56+12)×6
Reduce the fraction
2(56+12)
Apply the distributive property
2×56+2×12
Multiply the terms
106+2×12
Solution
106+24
Alternative Form
≈48.494897
Show Solution
