Question
Simplify the expression
16x2−16x3+4x4
Evaluate
(2x)2(2−x)2
Multiply the terms
(2x(2−x))2
Evaluate the power
22x2(2−x)2
Evaluate the power
4x2(2−x)2
Evaluate the power
4x2(4−4x+x2)
Apply the distributive property
4x2×4−4x2×4x+4x2×x2
Multiply the numbers
16x2−4x2×4x+4x2×x2
Multiply the terms
More Steps

Evaluate
4x2×4x
Multiply the numbers
16x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
16x3
16x2−16x3+4x2×x2
Solution
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
16x2−16x3+4x4
Show Solution

Find the roots
x1=0,x2=2
Evaluate
(2x)2(2−x)2
To find the roots of the expression,set the expression equal to 0
(2x)2(2−x)2=0
Multiply the terms
(2x(2−x))2=0
The only way a power can be 0 is when the base equals 0
2x(2−x)=0
Elimination the left coefficient
x(2−x)=0
Separate the equation into 2 possible cases
x=02−x=0
Solve the equation
More Steps

Evaluate
2−x=0
Move the constant to the right-hand side and change its sign
−x=0−2
Removing 0 doesn't change the value,so remove it from the expression
−x=−2
Change the signs on both sides of the equation
x=2
x=0x=2
Solution
x1=0,x2=2
Show Solution
