Question
Simplify the expression
116x−24−198x2+135x3−27x4
Evaluate
(2−3x)2(x−3)(2−3x)
Multiply the terms with the same base by adding their exponents
(2−3x)2+1(x−3)
Add the numbers
(2−3x)3(x−3)
Expand the expression
More Steps

Evaluate
(2−3x)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
23−3×22×3x+3×2(3x)2−(3x)3
Calculate
8−36x+54x2−27x3
(8−36x+54x2−27x3)(x−3)
Apply the distributive property
8x−8×3−36x×x−(−36x×3)+54x2×x−54x2×3−27x3×x−(−27x3×3)
Multiply the numbers
8x−24−36x×x−(−36x×3)+54x2×x−54x2×3−27x3×x−(−27x3×3)
Multiply the terms
8x−24−36x2−(−36x×3)+54x2×x−54x2×3−27x3×x−(−27x3×3)
Multiply the numbers
8x−24−36x2−(−108x)+54x2×x−54x2×3−27x3×x−(−27x3×3)
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
8x−24−36x2−(−108x)+54x3−54x2×3−27x3×x−(−27x3×3)
Multiply the numbers
8x−24−36x2−(−108x)+54x3−162x2−27x3×x−(−27x3×3)
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
8x−24−36x2−(−108x)+54x3−162x2−27x4−(−27x3×3)
Multiply the numbers
8x−24−36x2−(−108x)+54x3−162x2−27x4−(−81x3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
8x−24−36x2+108x+54x3−162x2−27x4+81x3
Add the terms
More Steps

Evaluate
8x+108x
Collect like terms by calculating the sum or difference of their coefficients
(8+108)x
Add the numbers
116x
116x−24−36x2+54x3−162x2−27x4+81x3
Subtract the terms
More Steps

Evaluate
−36x2−162x2
Collect like terms by calculating the sum or difference of their coefficients
(−36−162)x2
Subtract the numbers
−198x2
116x−24−198x2+54x3−27x4+81x3
Solution
More Steps

Evaluate
54x3+81x3
Collect like terms by calculating the sum or difference of their coefficients
(54+81)x3
Add the numbers
135x3
116x−24−198x2+135x3−27x4
Show Solution

Find the roots
x1=32,x2=3
Alternative Form
x1=0.6˙,x2=3
Evaluate
(2−3x)2(x−3)(2−3x)
To find the roots of the expression,set the expression equal to 0
(2−3x)2(x−3)(2−3x)=0
Multiply
More Steps

Multiply the terms
(2−3x)2(x−3)(2−3x)
Multiply the terms with the same base by adding their exponents
(2−3x)2+1(x−3)
Add the numbers
(2−3x)3(x−3)
(2−3x)3(x−3)=0
Separate the equation into 2 possible cases
(2−3x)3=0x−3=0
Solve the equation
More Steps

Evaluate
(2−3x)3=0
The only way a power can be 0 is when the base equals 0
2−3x=0
Move the constant to the right-hand side and change its sign
−3x=0−2
Removing 0 doesn't change the value,so remove it from the expression
−3x=−2
Change the signs on both sides of the equation
3x=2
Divide both sides
33x=32
Divide the numbers
x=32
x=32x−3=0
Solve the equation
More Steps

Evaluate
x−3=0
Move the constant to the right-hand side and change its sign
x=0+3
Removing 0 doesn't change the value,so remove it from the expression
x=3
x=32x=3
Solution
x1=32,x2=3
Alternative Form
x1=0.6˙,x2=3
Show Solution
