Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
c1=615−165,c2=615+165
Alternative Form
c1≈0.359128,c2≈4.640872
Evaluate
(2−c)×3(c−3)=−13
Multiply the first two terms
3(2−c)(c−3)=−13
Expand the expression
More Steps

Evaluate
3(2−c)(c−3)
Multiply the terms
More Steps

Evaluate
3(2−c)
Apply the distributive property
3×2−3c
Multiply the numbers
6−3c
(6−3c)(c−3)
Apply the distributive property
6c−6×3−3c×c−(−3c×3)
Multiply the numbers
6c−18−3c×c−(−3c×3)
Multiply the terms
6c−18−3c2−(−3c×3)
Multiply the numbers
6c−18−3c2−(−9c)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6c−18−3c2+9c
Add the terms
More Steps

Evaluate
6c+9c
Collect like terms by calculating the sum or difference of their coefficients
(6+9)c
Add the numbers
15c
15c−18−3c2
15c−18−3c2=−13
Move the expression to the left side
15c−5−3c2=0
Rewrite in standard form
−3c2+15c−5=0
Multiply both sides
3c2−15c+5=0
Substitute a=3,b=−15 and c=5 into the quadratic formula c=2a−b±b2−4ac
c=2×315±(−15)2−4×3×5
Simplify the expression
c=615±(−15)2−4×3×5
Simplify the expression
More Steps

Evaluate
(−15)2−4×3×5
Multiply the terms
More Steps

Multiply the terms
4×3×5
Multiply the terms
12×5
Multiply the numbers
60
(−15)2−60
Rewrite the expression
152−60
Evaluate the power
225−60
Subtract the numbers
165
c=615±165
Separate the equation into 2 possible cases
c=615+165c=615−165
Solution
c1=615−165,c2=615+165
Alternative Form
c1≈0.359128,c2≈4.640872
Show Solution
