Question
Simplify the expression
104−2r2−5r
Evaluate
52−r2−2r
Reduce fractions to a common denominator
5×2(2−r2)×2−2×5r×5
Multiply the numbers
10(2−r2)×2−2×5r×5
Multiply the numbers
10(2−r2)×2−10r×5
Write all numerators above the common denominator
10(2−r2)×2−r×5
Multiply the terms
More Steps

Evaluate
(2−r2)×2
Apply the distributive property
2×2−r2×2
Multiply the numbers
4−r2×2
Use the commutative property to reorder the terms
4−2r2
104−2r2−r×5
Solution
104−2r2−5r
Show Solution

Find the roots
r1=−45+57,r2=4−5+57
Alternative Form
r1≈−3.137459,r2≈0.637459
Evaluate
52−r2−2r
To find the roots of the expression,set the expression equal to 0
52−r2−2r=0
Subtract the terms
More Steps

Simplify
52−r2−2r
Reduce fractions to a common denominator
5×2(2−r2)×2−2×5r×5
Multiply the numbers
10(2−r2)×2−2×5r×5
Multiply the numbers
10(2−r2)×2−10r×5
Write all numerators above the common denominator
10(2−r2)×2−r×5
Multiply the terms
More Steps

Evaluate
(2−r2)×2
Apply the distributive property
2×2−r2×2
Multiply the numbers
4−r2×2
Use the commutative property to reorder the terms
4−2r2
104−2r2−r×5
Use the commutative property to reorder the terms
104−2r2−5r
104−2r2−5r=0
Simplify
4−2r2−5r=0
Rewrite in standard form
−2r2−5r+4=0
Multiply both sides
2r2+5r−4=0
Substitute a=2,b=5 and c=−4 into the quadratic formula r=2a−b±b2−4ac
r=2×2−5±52−4×2(−4)
Simplify the expression
r=4−5±52−4×2(−4)
Simplify the expression
More Steps

Evaluate
52−4×2(−4)
Multiply
More Steps

Multiply the terms
4×2(−4)
Rewrite the expression
−4×2×4
Multiply the terms
−32
52−(−32)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+32
Evaluate the power
25+32
Add the numbers
57
r=4−5±57
Separate the equation into 2 possible cases
r=4−5+57r=4−5−57
Use b−a=−ba=−ba to rewrite the fraction
r=4−5+57r=−45+57
Solution
r1=−45+57,r2=4−5+57
Alternative Form
r1≈−3.137459,r2≈0.637459
Show Solution
