Question
Simplify the expression
16−24x+12x2−2x3
Evaluate
(2−x)2×2(2−x)×1
Rewrite the expression
(2−x)2×2(2−x)
Multiply the terms with the same base by adding their exponents
(2−x)2+1×2
Add the numbers
(2−x)3×2
Use the commutative property to reorder the terms
2(2−x)3
Expand the expression
More Steps

Evaluate
(2−x)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
23−3×22x+3×2x2−x3
Calculate
8−12x+6x2−x3
2(8−12x+6x2−x3)
Apply the distributive property
2×8−2×12x+2×6x2−2x3
Multiply the numbers
16−2×12x+2×6x2−2x3
Multiply the numbers
16−24x+2×6x2−2x3
Solution
16−24x+12x2−2x3
Show Solution

Find the roots
x=2
Evaluate
(2−x)2×2(2−x)×1
To find the roots of the expression,set the expression equal to 0
(2−x)2×2(2−x)×1=0
Multiply the terms
More Steps

Multiply the terms
(2−x)2×2(2−x)×1
Rewrite the expression
(2−x)2×2(2−x)
Multiply the terms with the same base by adding their exponents
(2−x)2+1×2
Add the numbers
(2−x)3×2
Use the commutative property to reorder the terms
2(2−x)3
2(2−x)3=0
Rewrite the expression
(2−x)3=0
The only way a power can be 0 is when the base equals 0
2−x=0
Move the constant to the right-hand side and change its sign
−x=0−2
Removing 0 doesn't change the value,so remove it from the expression
−x=−2
Solution
x=2
Show Solution
