Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−3212+45187,x2=3−212+45187
Alternative Form
x1≈−141.524114,x2≈0.19078
Evaluate
21−3x2−3x=421x−60
Move the expression to the left side
81−3x2−424x=0
Rewrite in standard form
−3x2−424x+81=0
Multiply both sides
3x2+424x−81=0
Substitute a=3,b=424 and c=−81 into the quadratic formula x=2a−b±b2−4ac
x=2×3−424±4242−4×3(−81)
Simplify the expression
x=6−424±4242−4×3(−81)
Simplify the expression
More Steps

Evaluate
4242−4×3(−81)
Multiply
More Steps

Multiply the terms
4×3(−81)
Rewrite the expression
−4×3×81
Multiply the terms
−972
4242−(−972)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4242+972
x=6−424±4242+972
Simplify the radical expression
More Steps

Evaluate
4242+972
Add the numbers
180748
Write the expression as a product where the root of one of the factors can be evaluated
4×45187
Write the number in exponential form with the base of 2
22×45187
The root of a product is equal to the product of the roots of each factor
22×45187
Reduce the index of the radical and exponent with 2
245187
x=6−424±245187
Separate the equation into 2 possible cases
x=6−424+245187x=6−424−245187
Simplify the expression
More Steps

Evaluate
x=6−424+245187
Divide the terms
More Steps

Evaluate
6−424+245187
Rewrite the expression
62(−212+45187)
Cancel out the common factor 2
3−212+45187
x=3−212+45187
x=3−212+45187x=6−424−245187
Simplify the expression
More Steps

Evaluate
x=6−424−245187
Divide the terms
More Steps

Evaluate
6−424−245187
Rewrite the expression
62(−212−45187)
Cancel out the common factor 2
3−212−45187
Use b−a=−ba=−ba to rewrite the fraction
−3212+45187
x=−3212+45187
x=3−212+45187x=−3212+45187
Solution
x1=−3212+45187,x2=3−212+45187
Alternative Form
x1≈−141.524114,x2≈0.19078
Show Solution
