Question
Solve the equation
x1=0,x2=75932−152149,x3=75932+152149
Alternative Form
x1=0,x2≈7.225829,x3≈17.627504
Evaluate
233x(8x−41)=15×5x3
Multiply the numbers
233x(8x−41)=75x3
Expand the expression
More Steps

Evaluate
233x(8x−41)
Apply the distributive property
233x×8x−233x×41
Multiply the terms
More Steps

Evaluate
233x×8x
Multiply the numbers
1864x×x
Multiply the terms
1864x2
1864x2−233x×41
Multiply the numbers
1864x2−9553x
1864x2−9553x=75x3
Move the expression to the left side
1864x2−9553x−75x3=0
Factor the expression
x(1864x−9553−75x2)=0
Separate the equation into 2 possible cases
x=01864x−9553−75x2=0
Solve the equation
More Steps

Evaluate
1864x−9553−75x2=0
Rewrite in standard form
−75x2+1864x−9553=0
Multiply both sides
75x2−1864x+9553=0
Substitute a=75,b=−1864 and c=9553 into the quadratic formula x=2a−b±b2−4ac
x=2×751864±(−1864)2−4×75×9553
Simplify the expression
x=1501864±(−1864)2−4×75×9553
Simplify the expression
More Steps

Evaluate
(−1864)2−4×75×9553
Multiply the terms
(−1864)2−2865900
Calculate
18642−2865900
x=1501864±18642−2865900
Simplify the radical expression
More Steps

Evaluate
18642−2865900
Add the numbers
608596
Write the expression as a product where the root of one of the factors can be evaluated
4×152149
Write the number in exponential form with the base of 2
22×152149
The root of a product is equal to the product of the roots of each factor
22×152149
Reduce the index of the radical and exponent with 2
2152149
x=1501864±2152149
Separate the equation into 2 possible cases
x=1501864+2152149x=1501864−2152149
Simplify the expression
x=75932+152149x=1501864−2152149
Simplify the expression
x=75932+152149x=75932−152149
x=0x=75932+152149x=75932−152149
Solution
x1=0,x2=75932−152149,x3=75932+152149
Alternative Form
x1=0,x2≈7.225829,x3≈17.627504
Show Solution
