Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=37289553−91371649,x2=37289553+91371649
Alternative Form
x1≈−0.00157,x2≈5.12657
Evaluate
233x(8x−41)=15
Expand the expression
More Steps

Evaluate
233x(8x−41)
Apply the distributive property
233x×8x−233x×41
Multiply the terms
More Steps

Evaluate
233x×8x
Multiply the numbers
1864x×x
Multiply the terms
1864x2
1864x2−233x×41
Multiply the numbers
1864x2−9553x
1864x2−9553x=15
Move the expression to the left side
1864x2−9553x−15=0
Substitute a=1864,b=−9553 and c=−15 into the quadratic formula x=2a−b±b2−4ac
x=2×18649553±(−9553)2−4×1864(−15)
Simplify the expression
x=37289553±(−9553)2−4×1864(−15)
Simplify the expression
More Steps

Evaluate
(−9553)2−4×1864(−15)
Multiply
More Steps

Multiply the terms
4×1864(−15)
Rewrite the expression
−4×1864×15
Multiply the terms
−111840
(−9553)2−(−111840)
Rewrite the expression
95532−(−111840)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
95532+111840
x=37289553±95532+111840
Simplify the radical expression
x=37289553±91371649
Separate the equation into 2 possible cases
x=37289553+91371649x=37289553−91371649
Solution
x1=37289553−91371649,x2=37289553+91371649
Alternative Form
x1≈−0.00157,x2≈5.12657
Show Solution
