Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=12501−5062501,x2=12501+5062501
Alternative Form
x1≈−1.7992,x2≈1.8008
Evaluate
(25x)2−452=x
Subtract the terms
More Steps

Evaluate
(25x)2−452
Evaluate the power
(25x)2−2025
Rewrite the expression
More Steps

Evaluate
(25x)2
To raise a product to a power,raise each factor to that power
252x2
Evaluate the power
625x2
625x2−2025
625x2−2025=x
Move the expression to the left side
625x2−2025−x=0
Rewrite in standard form
625x2−x−2025=0
Substitute a=625,b=−1 and c=−2025 into the quadratic formula x=2a−b±b2−4ac
x=2×6251±(−1)2−4×625(−2025)
Simplify the expression
x=12501±(−1)2−4×625(−2025)
Simplify the expression
More Steps

Evaluate
(−1)2−4×625(−2025)
Evaluate the power
1−4×625(−2025)
Multiply
More Steps

Multiply the terms
4×625(−2025)
Rewrite the expression
−4×625×2025
Multiply the terms
−5062500
1−(−5062500)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+5062500
Add the numbers
5062501
x=12501±5062501
Separate the equation into 2 possible cases
x=12501+5062501x=12501−5062501
Solution
x1=12501−5062501,x2=12501+5062501
Alternative Form
x1≈−1.7992,x2≈1.8008
Show Solution
