Question  
 Simplify the expression
5325x2−4
Evaluate
(25÷53)x2−4
Solution
5325x2−4
        Show Solution
        
Factor the expression
531(25x2−212)
Evaluate
(25÷53)x2−4
Rewrite the expression
5325x2−4
Solution
531(25x2−212)
        Show Solution
        
Find the roots
x1=−5253,x2=5253
Alternative Form
 x1≈−2.912044,x2≈2.912044
Evaluate
(25÷53)x2−4
To find the roots of the expression,set the expression equal to 0
(25÷53)x2−4=0
Rewrite the expression
5325x2−4=0
Move the constant to the right-hand side and change its sign
5325x2=0+4
Removing 0 doesn't change the value,so remove it from the expression
5325x2=4
Multiply by the reciprocal
5325x2×2553=4×2553
Multiply
x2=4×2553
Multiply
        More Steps
        
Evaluate
4×2553
Multiply the numbers
254×53
Multiply the numbers
25212
x2=25212
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±25212
Simplify the expression
        More Steps
        
Evaluate
25212
To take a root of a fraction,take the root of the numerator and denominator separately
25212
Simplify the radical expression
        More Steps
        
Evaluate
212
Write the expression as a product where the root of one of the factors can be evaluated
4×53
Write the number in exponential form with the base of 2
22×53
The root of a product is equal to the product of the roots of each factor
22×53
Reduce the index of the radical and exponent with 2
253
25253
Simplify the radical expression
        More Steps
        
Evaluate
25
Write the number in exponential form with the base of 5
52
Reduce the index of the radical and exponent with 2
5
5253
x=±5253
Separate the equation into 2 possible cases
x=5253x=−5253
Solution
x1=−5253,x2=5253
Alternative Form
x1≈−2.912044,x2≈2.912044
        Show Solution
        