Question
Simplify the expression
125y2−54y+1
Evaluate
25y(5y−2)−(4y−1)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
25y(5y−2)−4y+1
Expand the expression
More Steps

Calculate
25y(5y−2)
Apply the distributive property
25y×5y−25y×2
Multiply the terms
More Steps

Evaluate
25y×5y
Multiply the numbers
125y×y
Multiply the terms
125y2
125y2−25y×2
Multiply the numbers
125y2−50y
125y2−50y−4y+1
Solution
More Steps

Evaluate
−50y−4y
Collect like terms by calculating the sum or difference of their coefficients
(−50−4)y
Subtract the numbers
−54y
125y2−54y+1
Show Solution

Find the roots
y1=12527−2151,y2=12527+2151
Alternative Form
y1≈0.019389,y2≈0.412611
Evaluate
(25y)(5y−2)−(4y−1)
To find the roots of the expression,set the expression equal to 0
(25y)(5y−2)−(4y−1)=0
Multiply the terms
25y(5y−2)−(4y−1)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
25y(5y−2)−4y+1=0
Calculate the sum or difference
More Steps

Evaluate
25y(5y−2)−4y+1
Expand the expression
More Steps

Calculate
25y(5y−2)
Apply the distributive property
25y×5y−25y×2
Multiply the terms
125y2−25y×2
Multiply the numbers
125y2−50y
125y2−50y−4y+1
Subtract the terms
More Steps

Evaluate
−50y−4y
Collect like terms by calculating the sum or difference of their coefficients
(−50−4)y
Subtract the numbers
−54y
125y2−54y+1
125y2−54y+1=0
Substitute a=125,b=−54 and c=1 into the quadratic formula y=2a−b±b2−4ac
y=2×12554±(−54)2−4×125
Simplify the expression
y=25054±(−54)2−4×125
Simplify the expression
More Steps

Evaluate
(−54)2−4×125
Multiply the numbers
(−54)2−500
Rewrite the expression
542−500
Evaluate the power
2916−500
Subtract the numbers
2416
y=25054±2416
Simplify the radical expression
More Steps

Evaluate
2416
Write the expression as a product where the root of one of the factors can be evaluated
16×151
Write the number in exponential form with the base of 4
42×151
The root of a product is equal to the product of the roots of each factor
42×151
Reduce the index of the radical and exponent with 2
4151
y=25054±4151
Separate the equation into 2 possible cases
y=25054+4151y=25054−4151
Simplify the expression
More Steps

Evaluate
y=25054+4151
Divide the terms
More Steps

Evaluate
25054+4151
Rewrite the expression
2502(27+2151)
Cancel out the common factor 2
12527+2151
y=12527+2151
y=12527+2151y=25054−4151
Simplify the expression
More Steps

Evaluate
y=25054−4151
Divide the terms
More Steps

Evaluate
25054−4151
Rewrite the expression
2502(27−2151)
Cancel out the common factor 2
12527−2151
y=12527−2151
y=12527+2151y=12527−2151
Solution
y1=12527−2151,y2=12527+2151
Alternative Form
y1≈0.019389,y2≈0.412611
Show Solution
