Question
Solve the equation
Solve for x
Solve for v
x=0x=910426186592250vx=−910426186592250v
Evaluate
(260×825)x5×56=vx(825×556)
Remove the parentheses
260×825x5×56=vx×825×556
Simplify
260x5×56=vx×556
Multiply the terms
14560x5=vx×556
Use the commutative property to reorder the terms
14560x5=556vx
Add or subtract both sides
14560x5−556vx=0
Factor the expression
4x(3640x4−139v)=0
Divide both sides
x(3640x4−139v)=0
Separate the equation into 2 possible cases
x=03640x4−139v=0
Solve the equation
More Steps

Evaluate
3640x4−139v=0
Move the expression to the right-hand side and change its sign
3640x4=0+139v
Add the terms
3640x4=139v
Divide both sides
36403640x4=3640139v
Divide the numbers
x4=3640139v
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±43640139v
Simplify the expression
More Steps

Evaluate
43640139v
To take a root of a fraction,take the root of the numerator and denominator separately
436404139v
Multiply by the Conjugate
43640×4364034139v×436403
Calculate
36404139v×436403
Calculate
36404139×36403v
x=±36404139×36403v
Separate the equation into 2 possible cases
x=36404139×36403vx=−36404139×36403v
x=0x=36404139×36403vx=−36404139×36403v
Simplify
x=0x=910426186592250vx=−36404139×36403v
Solution
x=0x=910426186592250vx=−910426186592250v
Show Solution
