Question
Simplify the expression
−2187n4−17496n3+180n−1440810n4−1830n3+1000n2
Evaluate
−9n2×27n−2027n−25×9n−7230n3−40n2
Multiply
More Steps

Multiply the terms
−9n2×27n
Multiply the terms
−243n2×n
Multiply the terms with the same base by adding their exponents
−243n2+1
Add the numbers
−243n3
−243n3−2027n−25×9n−7230n3−40n2
Use b−a=−ba=−ba to rewrite the fraction
−243n3+2027n−25×9n−7230n3−40n2
Multiply the terms
−(243n3+20)(9n−72)(27n−25)(30n3−40n2)
Multiply the terms
More Steps

Evaluate
(27n−25)(30n3−40n2)
Apply the distributive property
27n×30n3−27n×40n2−25×30n3−(−25×40n2)
Multiply the terms
More Steps

Evaluate
27n×30n3
Multiply the numbers
810n×n3
Multiply the terms
810n4
810n4−27n×40n2−25×30n3−(−25×40n2)
Multiply the terms
More Steps

Evaluate
27n×40n2
Multiply the numbers
1080n×n2
Multiply the terms
1080n3
810n4−1080n3−25×30n3−(−25×40n2)
Multiply the numbers
810n4−1080n3−750n3−(−25×40n2)
Multiply the numbers
810n4−1080n3−750n3−(−1000n2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
810n4−1080n3−750n3+1000n2
Subtract the terms
More Steps

Evaluate
−1080n3−750n3
Collect like terms by calculating the sum or difference of their coefficients
(−1080−750)n3
Subtract the numbers
−1830n3
810n4−1830n3+1000n2
−(243n3+20)(9n−72)810n4−1830n3+1000n2
Solution
More Steps

Evaluate
(243n3+20)(9n−72)
Apply the distributive property
243n3×9n−243n3×72+20×9n−20×72
Multiply the terms
More Steps

Evaluate
243n3×9n
Multiply the numbers
2187n3×n
Multiply the terms
2187n4
2187n4−243n3×72+20×9n−20×72
Multiply the numbers
2187n4−17496n3+20×9n−20×72
Multiply the numbers
2187n4−17496n3+180n−20×72
Multiply the numbers
2187n4−17496n3+180n−1440
−2187n4−17496n3+180n−1440810n4−1830n3+1000n2
Show Solution

Find the excluded values
n=−9360,n=8
Evaluate
−9n2×27n−2027n−25×9n−7230n3−40n2
To find the excluded values,set the denominators equal to 0
−9n2×27n−20=09n−72=0
Solve the equations
More Steps

Evaluate
−9n2×27n−20=0
Multiply
More Steps

Evaluate
−9n2×27n
Multiply the terms
−243n2×n
Multiply the terms with the same base by adding their exponents
−243n2+1
Add the numbers
−243n3
−243n3−20=0
Move the constant to the right-hand side and change its sign
−243n3=0+20
Removing 0 doesn't change the value,so remove it from the expression
−243n3=20
Change the signs on both sides of the equation
243n3=−20
Divide both sides
243243n3=243−20
Divide the numbers
n3=243−20
Use b−a=−ba=−ba to rewrite the fraction
n3=−24320
Take the 3-th root on both sides of the equation
3n3=3−24320
Calculate
n=3−24320
Simplify the root
More Steps

Evaluate
3−24320
An odd root of a negative radicand is always a negative
−324320
To take a root of a fraction,take the root of the numerator and denominator separately
−3243320
Simplify the radical expression
−339320
Multiply by the Conjugate
339×392−320×392
Simplify
339×392−320×333
Multiply the numbers
339×392−3360
Multiply the numbers
33−3360
Rewrite the expression
3×9−3360
Cancel out the common factor 3
9−360
Calculate
−9360
n=−9360
n=−93609n−72=0
Solve the equations
More Steps

Evaluate
9n−72=0
Move the constant to the right-hand side and change its sign
9n=0+72
Removing 0 doesn't change the value,so remove it from the expression
9n=72
Divide both sides
99n=972
Divide the numbers
n=972
Divide the numbers
More Steps

Evaluate
972
Reduce the numbers
18
Calculate
8
n=8
n=−9360n=8
Solution
n=−9360,n=8
Show Solution

Find the roots
n1=0,n2=2725,n3=34
Alternative Form
n1=0,n2=0.9˙25˙,n3=1.3˙
Evaluate
−9n2×27n−2027n−25×9n−7230n3−40n2
To find the roots of the expression,set the expression equal to 0
−9n2×27n−2027n−25×9n−7230n3−40n2=0
Find the domain
More Steps

Evaluate
{−9n2×27n−20=09n−72=0
Calculate
More Steps

Evaluate
−9n2×27n−20=0
Multiply
−243n3−20=0
Move the constant to the right side
−243n3=20
Change the signs on both sides of the equation
243n3=−20
Divide both sides
243243n3=243−20
Divide the numbers
n3=243−20
Use b−a=−ba=−ba to rewrite the fraction
n3=−24320
Take the 3-th root on both sides of the equation
3n3=3−24320
Calculate
n=3−24320
Simplify the root
n=−9360
{n=−93609n−72=0
Calculate
More Steps

Evaluate
9n−72=0
Move the constant to the right side
9n=0+72
Removing 0 doesn't change the value,so remove it from the expression
9n=72
Divide both sides
99n=972
Divide the numbers
n=972
Divide the numbers
n=8
{n=−9360n=8
Find the intersection
n∈(−∞,−9360)∪(−9360,8)∪(8,+∞)
−9n2×27n−2027n−25×9n−7230n3−40n2=0,n∈(−∞,−9360)∪(−9360,8)∪(8,+∞)
Calculate
−9n2×27n−2027n−25×9n−7230n3−40n2=0
Multiply
More Steps

Multiply the terms
−9n2×27n
Multiply the terms
−243n2×n
Multiply the terms with the same base by adding their exponents
−243n2+1
Add the numbers
−243n3
−243n3−2027n−25×9n−7230n3−40n2=0
Use b−a=−ba=−ba to rewrite the fraction
−243n3+2027n−25×9n−7230n3−40n2=0
Multiply the terms
−(243n3+20)(9n−72)(27n−25)(30n3−40n2)=0
Rewrite the expression
(243n3+20)(9n−72)(−27n+25)(30n3−40n2)=0
Cross multiply
(−27n+25)(30n3−40n2)=(243n3+20)(9n−72)×0
Simplify the equation
(−27n+25)(30n3−40n2)=0
Change the sign
(27n−25)(30n3−40n2)=0
Separate the equation into 2 possible cases
27n−25=030n3−40n2=0
Solve the equation
More Steps

Evaluate
27n−25=0
Move the constant to the right-hand side and change its sign
27n=0+25
Removing 0 doesn't change the value,so remove it from the expression
27n=25
Divide both sides
2727n=2725
Divide the numbers
n=2725
n=272530n3−40n2=0
Solve the equation
More Steps

Evaluate
30n3−40n2=0
Factor the expression
10n2(3n−4)=0
Divide both sides
n2(3n−4)=0
Separate the equation into 2 possible cases
n2=03n−4=0
The only way a power can be 0 is when the base equals 0
n=03n−4=0
Solve the equation
More Steps

Evaluate
3n−4=0
Move the constant to the right-hand side and change its sign
3n=0+4
Removing 0 doesn't change the value,so remove it from the expression
3n=4
Divide both sides
33n=34
Divide the numbers
n=34
n=0n=34
n=2725n=0n=34
Check if the solution is in the defined range
n=2725n=0n=34,n∈(−∞,−9360)∪(−9360,8)∪(8,+∞)
Find the intersection of the solution and the defined range
n=2725n=0n=34
Solution
n1=0,n2=2725,n3=34
Alternative Form
n1=0,n2=0.9˙25˙,n3=1.3˙
Show Solution
