Question
Simplify the expression
−243n4−1944n3+20n−16090n4−270n3+200n2
Evaluate
−9n2×27n−2027n−45×9n−7230n3−40n2
Multiply
More Steps

Multiply the terms
−9n2×27n
Multiply the terms
−243n2×n
Multiply the terms with the same base by adding their exponents
−243n2+1
Add the numbers
−243n3
−243n3−2027n−45×9n−7230n3−40n2
Use b−a=−ba=−ba to rewrite the fraction
−243n3+2027n−45×9n−7230n3−40n2
Rewrite the expression
−243n3+209(3n−5)×9n−7230n3−40n2
Rewrite the expression
−243n3+209(3n−5)×9(n−8)30n3−40n2
Cancel out the common factor 9
−243n3+203n−5×n−830n3−40n2
Multiply the terms
−(243n3+20)(n−8)(3n−5)(30n3−40n2)
Multiply the terms
More Steps

Evaluate
(3n−5)(30n3−40n2)
Apply the distributive property
3n×30n3−3n×40n2−5×30n3−(−5×40n2)
Multiply the terms
More Steps

Evaluate
3n×30n3
Multiply the numbers
90n×n3
Multiply the terms
90n4
90n4−3n×40n2−5×30n3−(−5×40n2)
Multiply the terms
More Steps

Evaluate
3n×40n2
Multiply the numbers
120n×n2
Multiply the terms
120n3
90n4−120n3−5×30n3−(−5×40n2)
Multiply the numbers
90n4−120n3−150n3−(−5×40n2)
Multiply the numbers
90n4−120n3−150n3−(−200n2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
90n4−120n3−150n3+200n2
Subtract the terms
More Steps

Evaluate
−120n3−150n3
Collect like terms by calculating the sum or difference of their coefficients
(−120−150)n3
Subtract the numbers
−270n3
90n4−270n3+200n2
−(243n3+20)(n−8)90n4−270n3+200n2
Solution
More Steps

Evaluate
(243n3+20)(n−8)
Apply the distributive property
243n3×n−243n3×8+20n−20×8
Multiply the terms
More Steps

Evaluate
n3×n
Use the product rule an×am=an+m to simplify the expression
n3+1
Add the numbers
n4
243n4−243n3×8+20n−20×8
Multiply the numbers
243n4−1944n3+20n−20×8
Multiply the numbers
243n4−1944n3+20n−160
−243n4−1944n3+20n−16090n4−270n3+200n2
Show Solution

Find the excluded values
n=−9360,n=8
Evaluate
−9n2×27n−2027n−45×9n−7230n3−40n2
To find the excluded values,set the denominators equal to 0
−9n2×27n−20=09n−72=0
Solve the equations
More Steps

Evaluate
−9n2×27n−20=0
Multiply
More Steps

Evaluate
−9n2×27n
Multiply the terms
−243n2×n
Multiply the terms with the same base by adding their exponents
−243n2+1
Add the numbers
−243n3
−243n3−20=0
Move the constant to the right-hand side and change its sign
−243n3=0+20
Removing 0 doesn't change the value,so remove it from the expression
−243n3=20
Change the signs on both sides of the equation
243n3=−20
Divide both sides
243243n3=243−20
Divide the numbers
n3=243−20
Use b−a=−ba=−ba to rewrite the fraction
n3=−24320
Take the 3-th root on both sides of the equation
3n3=3−24320
Calculate
n=3−24320
Simplify the root
More Steps

Evaluate
3−24320
An odd root of a negative radicand is always a negative
−324320
To take a root of a fraction,take the root of the numerator and denominator separately
−3243320
Simplify the radical expression
−339320
Multiply by the Conjugate
339×392−320×392
Simplify
339×392−320×333
Multiply the numbers
339×392−3360
Multiply the numbers
33−3360
Rewrite the expression
3×9−3360
Cancel out the common factor 3
9−360
Calculate
−9360
n=−9360
n=−93609n−72=0
Solve the equations
More Steps

Evaluate
9n−72=0
Move the constant to the right-hand side and change its sign
9n=0+72
Removing 0 doesn't change the value,so remove it from the expression
9n=72
Divide both sides
99n=972
Divide the numbers
n=972
Divide the numbers
More Steps

Evaluate
972
Reduce the numbers
18
Calculate
8
n=8
n=−9360n=8
Solution
n=−9360,n=8
Show Solution

Find the roots
n1=0,n2=34,n3=35
Alternative Form
n1=0,n2=1.3˙,n3=1.6˙
Evaluate
−9n2×27n−2027n−45×9n−7230n3−40n2
To find the roots of the expression,set the expression equal to 0
−9n2×27n−2027n−45×9n−7230n3−40n2=0
Find the domain
More Steps

Evaluate
{−9n2×27n−20=09n−72=0
Calculate
More Steps

Evaluate
−9n2×27n−20=0
Multiply
−243n3−20=0
Move the constant to the right side
−243n3=20
Change the signs on both sides of the equation
243n3=−20
Divide both sides
243243n3=243−20
Divide the numbers
n3=243−20
Use b−a=−ba=−ba to rewrite the fraction
n3=−24320
Take the 3-th root on both sides of the equation
3n3=3−24320
Calculate
n=3−24320
Simplify the root
n=−9360
{n=−93609n−72=0
Calculate
More Steps

Evaluate
9n−72=0
Move the constant to the right side
9n=0+72
Removing 0 doesn't change the value,so remove it from the expression
9n=72
Divide both sides
99n=972
Divide the numbers
n=972
Divide the numbers
n=8
{n=−9360n=8
Find the intersection
n∈(−∞,−9360)∪(−9360,8)∪(8,+∞)
−9n2×27n−2027n−45×9n−7230n3−40n2=0,n∈(−∞,−9360)∪(−9360,8)∪(8,+∞)
Calculate
−9n2×27n−2027n−45×9n−7230n3−40n2=0
Multiply
More Steps

Multiply the terms
−9n2×27n
Multiply the terms
−243n2×n
Multiply the terms with the same base by adding their exponents
−243n2+1
Add the numbers
−243n3
−243n3−2027n−45×9n−7230n3−40n2=0
Use b−a=−ba=−ba to rewrite the fraction
−243n3+2027n−45×9n−7230n3−40n2=0
Multiply the terms
More Steps

Multiply the terms
−243n3+2027n−45×9n−7230n3−40n2
Rewrite the expression
−243n3+209(3n−5)×9n−7230n3−40n2
Rewrite the expression
−243n3+209(3n−5)×9(n−8)30n3−40n2
Cancel out the common factor 9
−243n3+203n−5×n−830n3−40n2
Multiply the terms
−(243n3+20)(n−8)(3n−5)(30n3−40n2)
−(243n3+20)(n−8)(3n−5)(30n3−40n2)=0
Rewrite the expression
(243n3+20)(n−8)(−3n+5)(30n3−40n2)=0
Cross multiply
(−3n+5)(30n3−40n2)=(243n3+20)(n−8)×0
Simplify the equation
(−3n+5)(30n3−40n2)=0
Change the sign
(3n−5)(30n3−40n2)=0
Separate the equation into 2 possible cases
3n−5=030n3−40n2=0
Solve the equation
More Steps

Evaluate
3n−5=0
Move the constant to the right-hand side and change its sign
3n=0+5
Removing 0 doesn't change the value,so remove it from the expression
3n=5
Divide both sides
33n=35
Divide the numbers
n=35
n=3530n3−40n2=0
Solve the equation
More Steps

Evaluate
30n3−40n2=0
Factor the expression
10n2(3n−4)=0
Divide both sides
n2(3n−4)=0
Separate the equation into 2 possible cases
n2=03n−4=0
The only way a power can be 0 is when the base equals 0
n=03n−4=0
Solve the equation
More Steps

Evaluate
3n−4=0
Move the constant to the right-hand side and change its sign
3n=0+4
Removing 0 doesn't change the value,so remove it from the expression
3n=4
Divide both sides
33n=34
Divide the numbers
n=34
n=0n=34
n=35n=0n=34
Check if the solution is in the defined range
n=35n=0n=34,n∈(−∞,−9360)∪(−9360,8)∪(8,+∞)
Find the intersection of the solution and the defined range
n=35n=0n=34
Solution
n1=0,n2=34,n3=35
Alternative Form
n1=0,n2=1.3˙,n3=1.6˙
Show Solution
