Question
Simplify the expression
3x−1027x4−29430x3
Evaluate
3x−1027x4−327x2×90x
Solution
More Steps

Evaluate
327x2×90x
Multiply the terms
29430x2×x
Multiply the terms with the same base by adding their exponents
29430x2+1
Add the numbers
29430x3
3x−1027x4−29430x3
Show Solution

Find the excluded values
x=310
Evaluate
3x−1027x4−327x2×90x
To find the excluded values,set the denominators equal to 0
3x−10=0
Move the constant to the right-hand side and change its sign
3x=0+10
Removing 0 doesn't change the value,so remove it from the expression
3x=10
Divide both sides
33x=310
Solution
x=310
Show Solution

Find the roots
x1=0,x2=1090
Evaluate
3x−1027x4−327x2×90x
To find the roots of the expression,set the expression equal to 0
3x−1027x4−327x2×90x=0
Find the domain
More Steps

Evaluate
3x−10=0
Move the constant to the right side
3x=0+10
Removing 0 doesn't change the value,so remove it from the expression
3x=10
Divide both sides
33x=310
Divide the numbers
x=310
3x−1027x4−327x2×90x=0,x=310
Calculate
3x−1027x4−327x2×90x=0
Multiply
More Steps

Multiply the terms
327x2×90x
Multiply the terms
29430x2×x
Multiply the terms with the same base by adding their exponents
29430x2+1
Add the numbers
29430x3
3x−1027x4−29430x3=0
Cross multiply
27x4−29430x3=(3x−10)×0
Simplify the equation
27x4−29430x3=0
Factor the expression
27x3(x−1090)=0
Divide both sides
x3(x−1090)=0
Separate the equation into 2 possible cases
x3=0x−1090=0
The only way a power can be 0 is when the base equals 0
x=0x−1090=0
Solve the equation
More Steps

Evaluate
x−1090=0
Move the constant to the right-hand side and change its sign
x=0+1090
Removing 0 doesn't change the value,so remove it from the expression
x=1090
x=0x=1090
Check if the solution is in the defined range
x=0x=1090,x=310
Find the intersection of the solution and the defined range
x=0x=1090
Solution
x1=0,x2=1090
Show Solution
