Question
Simplify the expression
483783−56x+x2
Evaluate
2129−x×2327−x
Multiply the terms
21×23(29−x)(27−x)
Multiply the terms
483(29−x)(27−x)
Solution
More Steps

Evaluate
(29−x)(27−x)
Apply the distributive property
29×27−29x−x×27−(−x×x)
Multiply the numbers
783−29x−x×27−(−x×x)
Use the commutative property to reorder the terms
783−29x−27x−(−x×x)
Multiply the terms
783−29x−27x−(−x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
783−29x−27x+x2
Subtract the terms
More Steps

Evaluate
−29x−27x
Collect like terms by calculating the sum or difference of their coefficients
(−29−27)x
Subtract the numbers
−56x
783−56x+x2
483783−56x+x2
Show Solution

Find the roots
x1=27,x2=29
Evaluate
2129−x×2327−x
To find the roots of the expression,set the expression equal to 0
2129−x×2327−x=0
Multiply the terms
More Steps

Multiply the terms
2129−x×2327−x
Multiply the terms
21×23(29−x)(27−x)
Multiply the terms
483(29−x)(27−x)
483(29−x)(27−x)=0
Simplify
(29−x)(27−x)=0
Separate the equation into 2 possible cases
29−x=027−x=0
Solve the equation
More Steps

Evaluate
29−x=0
Move the constant to the right-hand side and change its sign
−x=0−29
Removing 0 doesn't change the value,so remove it from the expression
−x=−29
Change the signs on both sides of the equation
x=29
x=2927−x=0
Solve the equation
More Steps

Evaluate
27−x=0
Move the constant to the right-hand side and change its sign
−x=0−27
Removing 0 doesn't change the value,so remove it from the expression
−x=−27
Change the signs on both sides of the equation
x=27
x=29x=27
Solution
x1=27,x2=29
Show Solution
