Question
Simplify the expression
20a2
Evaluate
(2a43)2(5a21)
Evaluate
(2a43)2×5a21
Rewrite the expression
4a23×5a21
Multiply the numbers
20a23×a21
Solution
More Steps

Evaluate
a23×a21
Use the product rule an×am=an+m to simplify the expression
a23+21
Add the numbers
More Steps

Evaluate
23+21
Write all numerators above the common denominator
23+1
Add the numbers
24
Reduce the numbers
12
Calculate
2
a2
20a2
Show Solution

Find the roots
a=0
Evaluate
(2a43)2(5a21)
To find the roots of the expression,set the expression equal to 0
(2a43)2(5a21)=0
Find the domain
(2a43)2(5a21)=0,a≥0
Calculate
(2a43)2(5a21)=0
Multiply the terms
(2a43)2×5a21=0
Multiply the terms
More Steps

Evaluate
(2a43)2×5a21
Rewrite the expression
4a23×5a21
Multiply the numbers
20a23×a21
Multiply the terms
More Steps

Evaluate
a23×a21
Use the product rule an×am=an+m to simplify the expression
a23+21
Add the numbers
a2
20a2
20a2=0
Rewrite the expression
a2=0
The only way a power can be 0 is when the base equals 0
a=0
Check if the solution is in the defined range
a=0,a≥0
Solution
a=0
Show Solution
