Question
Simplify the expression
4a2b
Evaluate
36b22a3−a2b÷9b32a−b
Multiply by the reciprocal
36b22a3−a2b×2a−b9b3
Rewrite the expression
36b2a2(2a−b)×2a−b9b3
Cancel out the common factor 2a−b
36b2a2×9b3
Cancel out the common factor 9
4b2a2×b3
Cancel out the common factor b2
4a2b
Solution
4a2b
Show Solution

Find the excluded values
b=0,a=2b
Evaluate
36b22a3−a2b÷9b32a−b
To find the excluded values,set the denominators equal to 0
36b2=09b3=09b32a−b=0
Solve the equations
More Steps

Evaluate
36b2=0
Rewrite the expression
b2=0
The only way a power can be 0 is when the base equals 0
b=0
b=09b3=09b32a−b=0
Solve the equations
More Steps

Evaluate
9b3=0
Rewrite the expression
b3=0
The only way a power can be 0 is when the base equals 0
b=0
b=0b=09b32a−b=0
Solve the equations
More Steps

Evaluate
9b32a−b=0
Cross multiply
2a−b=9b3×0
Simplify the equation
2a−b=0
Move the expression to the right side
2a=0+b
Simplify
2a=b
Divide both sides
a=2b
b=0b=0a=2b
Solution
b=0,a=2b
Show Solution
