Question
Simplify the expression
324b5a2
Evaluate
(2a3−a2b)÷36b2÷(2a−b)÷9b3
Rewrite the expression
36b22a3−a2b÷(2a−b)÷9b3
Divide the terms
More Steps

Evaluate
36b22a3−a2b÷(2a−b)
Multiply by the reciprocal
36b22a3−a2b×2a−b1
Rewrite the expression
36b2a2(2a−b)×2a−b1
Cancel out the common factor 2a−b
36b2a2×1
Multiply the terms
36b2a2
36b2a2÷9b3
Multiply by the reciprocal
36b2a2×9b31
Multiply the terms
36b2×9b3a2
Solution
More Steps

Evaluate
36b2×9b3
Multiply the numbers
324b2×b3
Multiply the terms
More Steps

Evaluate
b2×b3
Use the product rule an×am=an+m to simplify the expression
b2+3
Add the numbers
b5
324b5
324b5a2
Show Solution

Find the excluded values
b=0,a=2b
Evaluate
(2a3−a2b)÷(36b2)÷(2a−b)÷(9b3)
To find the excluded values,set the denominators equal to 0
36b2=02a−b=09b3=0
Solve the equations
More Steps

Evaluate
36b2=0
Rewrite the expression
b2=0
The only way a power can be 0 is when the base equals 0
b=0
b=02a−b=09b3=0
Solve the equations
More Steps

Evaluate
2a−b=0
Move the expression to the right side
2a=0+b
Simplify
2a=b
Divide both sides
a=2b
b=0a=2b9b3=0
Solve the equations
More Steps

Evaluate
9b3=0
Rewrite the expression
b3=0
The only way a power can be 0 is when the base equals 0
b=0
b=0a=2bb=0
Solution
b=0,a=2b
Show Solution
