Question
Simplify the expression
4a3b−4a2b2−2a2b
Evaluate
(2a2b×1)(2a−2b−1)
Remove the parentheses
2a2b×1×(2a−2b−1)
Any expression multiplied by 1 remains the same
2a2b(2a−2b−1)
Apply the distributive property
2a2b×2a−2a2b×2b−2a2b×1
Multiply the terms
More Steps

Evaluate
2a2b×2a
Multiply the numbers
4a2ba
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
4a3b
4a3b−2a2b×2b−2a2b×1
Multiply the terms
More Steps

Evaluate
2a2b×2b
Multiply the numbers
4a2b×b
Multiply the terms
4a2b2
4a3b−4a2b2−2a2b×1
Solution
4a3b−4a2b2−2a2b
Show Solution
