Question
Simplify the expression
4a4−6a3
Evaluate
2a3(2a−3)
Apply the distributive property
2a3×2a−2a3×3
Multiply the terms
More Steps

Evaluate
2a3×2a
Multiply the numbers
4a3×a
Multiply the terms
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
4a4
4a4−2a3×3
Solution
4a4−6a3
Show Solution

Find the roots
a1=0,a2=23
Alternative Form
a1=0,a2=1.5
Evaluate
(2a3)(2a−3)
To find the roots of the expression,set the expression equal to 0
(2a3)(2a−3)=0
Multiply the terms
2a3(2a−3)=0
Elimination the left coefficient
a3(2a−3)=0
Separate the equation into 2 possible cases
a3=02a−3=0
The only way a power can be 0 is when the base equals 0
a=02a−3=0
Solve the equation
More Steps

Evaluate
2a−3=0
Move the constant to the right-hand side and change its sign
2a=0+3
Removing 0 doesn't change the value,so remove it from the expression
2a=3
Divide both sides
22a=23
Divide the numbers
a=23
a=0a=23
Solution
a1=0,a2=23
Alternative Form
a1=0,a2=1.5
Show Solution
