Question
Simplify the expression
4a4−4a3b−3ba2+3b3
Evaluate
2a3(a−b)×2−3b(a2−b2)
Multiply the terms
4a3(a−b)−3b(a2−b2)
Expand the expression
More Steps

Calculate
4a3(a−b)
Apply the distributive property
4a3×a−4a3b
Multiply the terms
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
4a4−4a3b
4a4−4a3b−3b(a2−b2)
Solution
More Steps

Calculate
−3b(a2−b2)
Apply the distributive property
−3ba2−(−3b×b2)
Multiply the terms
More Steps

Evaluate
b×b2
Use the product rule an×am=an+m to simplify the expression
b1+2
Add the numbers
b3
−3ba2−(−3b3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3ba2+3b3
4a4−4a3b−3ba2+3b3
Show Solution

Factor the expression
(4a3−3ba−3b2)(a−b)
Evaluate
2a3(a−b)×2−3b(a2−b2)
Multiply the terms
4a3(a−b)−3b(a2−b2)
Rewrite the expression
4a3(a−b)−3b(a+b)(a−b)
Factor out a−b from the expression
(4a3−3b(a+b))(a−b)
Solution
(4a3−3ba−3b2)(a−b)
Show Solution
