Question
Simplify the expression
−18g6+18g5
Evaluate
(2g−2)(−9g5)
Multiply the terms
−9g5(2g−2)
Apply the distributive property
−9g5×2g−(−9g5×2)
Multiply the terms
More Steps

Evaluate
−9g5×2g
Multiply the numbers
−18g5×g
Multiply the terms
More Steps

Evaluate
g5×g
Use the product rule an×am=an+m to simplify the expression
g5+1
Add the numbers
g6
−18g6
−18g6−(−9g5×2)
Multiply the numbers
−18g6−(−18g5)
Solution
−18g6+18g5
Show Solution

Factor the expression
−18g5(g−1)
Evaluate
(2g−2)(−9g5)
Multiply the terms
−9g5(2g−2)
Factor the expression
−9g5×2(g−1)
Solution
−18g5(g−1)
Show Solution

Find the roots
g1=0,g2=1
Evaluate
(2g−2)(−9g5)
To find the roots of the expression,set the expression equal to 0
(2g−2)(−9g5)=0
Multiply the terms
−9g5(2g−2)=0
Change the sign
9g5(2g−2)=0
Elimination the left coefficient
g5(2g−2)=0
Separate the equation into 2 possible cases
g5=02g−2=0
The only way a power can be 0 is when the base equals 0
g=02g−2=0
Solve the equation
More Steps

Evaluate
2g−2=0
Move the constant to the right-hand side and change its sign
2g=0+2
Removing 0 doesn't change the value,so remove it from the expression
2g=2
Divide both sides
22g=22
Divide the numbers
g=22
Divide the numbers
More Steps

Evaluate
22
Reduce the numbers
11
Calculate
1
g=1
g=0g=1
Solution
g1=0,g2=1
Show Solution
