Question
Simplify the expression
−2h3+2h2−4h+16
Evaluate
(2h−4)(−h2−h−4)
Apply the distributive property
2h(−h2)−2h×h−2h×4−4(−h2)−(−4h)−(−4×4)
Multiply the terms
More Steps

Evaluate
2h(−h2)
Multiply the numbers
−2h×h2
Multiply the terms
More Steps

Evaluate
h×h2
Use the product rule an×am=an+m to simplify the expression
h1+2
Add the numbers
h3
−2h3
−2h3−2h×h−2h×4−4(−h2)−(−4h)−(−4×4)
Multiply the terms
−2h3−2h2−2h×4−4(−h2)−(−4h)−(−4×4)
Multiply the numbers
−2h3−2h2−8h−4(−h2)−(−4h)−(−4×4)
Multiply the numbers
−2h3−2h2−8h+4h2−(−4h)−(−4×4)
Multiply the numbers
−2h3−2h2−8h+4h2−(−4h)−(−16)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2h3−2h2−8h+4h2+4h+16
Add the terms
More Steps

Evaluate
−2h2+4h2
Collect like terms by calculating the sum or difference of their coefficients
(−2+4)h2
Add the numbers
2h2
−2h3+2h2−8h+4h+16
Solution
More Steps

Evaluate
−8h+4h
Collect like terms by calculating the sum or difference of their coefficients
(−8+4)h
Add the numbers
−4h
−2h3+2h2−4h+16
Show Solution

Factor the expression
−2(h−2)(h2+h+4)
Evaluate
(2h−4)(−h2−h−4)
Factor the expression
2(h−2)(−h2−h−4)
Factor the expression
2(h−2)(−1)(h2+h+4)
Solution
−2(h−2)(h2+h+4)
Show Solution

Find the roots
h1=−21−215i,h2=−21+215i,h3=2
Alternative Form
h1≈−0.5−1.936492i,h2≈−0.5+1.936492i,h3=2
Evaluate
(2h−4)(−h2−h−4)
To find the roots of the expression,set the expression equal to 0
(2h−4)(−h2−h−4)=0
Separate the equation into 2 possible cases
2h−4=0−h2−h−4=0
Solve the equation
More Steps

Evaluate
2h−4=0
Move the constant to the right-hand side and change its sign
2h=0+4
Removing 0 doesn't change the value,so remove it from the expression
2h=4
Divide both sides
22h=24
Divide the numbers
h=24
Divide the numbers
More Steps

Evaluate
24
Reduce the numbers
12
Calculate
2
h=2
h=2−h2−h−4=0
Solve the equation
More Steps

Evaluate
−h2−h−4=0
Multiply both sides
h2+h+4=0
Substitute a=1,b=1 and c=4 into the quadratic formula h=2a−b±b2−4ac
h=2−1±12−4×4
Simplify the expression
More Steps

Evaluate
12−4×4
1 raised to any power equals to 1
1−4×4
Multiply the numbers
1−16
Subtract the numbers
−15
h=2−1±−15
Simplify the radical expression
More Steps

Evaluate
−15
Evaluate the power
15×−1
Evaluate the power
15×i
h=2−1±15×i
Separate the equation into 2 possible cases
h=2−1+15×ih=2−1−15×i
Simplify the expression
h=−21+215ih=2−1−15×i
Simplify the expression
h=−21+215ih=−21−215i
h=2h=−21+215ih=−21−215i
Solution
h1=−21−215i,h2=−21+215i,h3=2
Alternative Form
h1≈−0.5−1.936492i,h2≈−0.5+1.936492i,h3=2
Show Solution
