Question
Simplify the expression
4k4−6k3
Evaluate
(2k−3)×2k3
Multiply the terms
2k3(2k−3)
Apply the distributive property
2k3×2k−2k3×3
Multiply the terms
More Steps

Evaluate
2k3×2k
Multiply the numbers
4k3×k
Multiply the terms
More Steps

Evaluate
k3×k
Use the product rule an×am=an+m to simplify the expression
k3+1
Add the numbers
k4
4k4
4k4−2k3×3
Solution
4k4−6k3
Show Solution

Find the roots
k1=0,k2=23
Alternative Form
k1=0,k2=1.5
Evaluate
(2k−3)(2k3)
To find the roots of the expression,set the expression equal to 0
(2k−3)(2k3)=0
Multiply the terms
(2k−3)×2k3=0
Multiply the terms
2k3(2k−3)=0
Elimination the left coefficient
k3(2k−3)=0
Separate the equation into 2 possible cases
k3=02k−3=0
The only way a power can be 0 is when the base equals 0
k=02k−3=0
Solve the equation
More Steps

Evaluate
2k−3=0
Move the constant to the right-hand side and change its sign
2k=0+3
Removing 0 doesn't change the value,so remove it from the expression
2k=3
Divide both sides
22k=23
Divide the numbers
k=23
k=0k=23
Solution
k1=0,k2=23
Alternative Form
k1=0,k2=1.5
Show Solution
