Question
Simplify the expression
36m6−162m3
Evaluate
(2m3−9)(2m3×9)
Remove the parentheses
(2m3−9)×2m3×9
Multiply the terms
(2m3−9)×18m3
Multiply the terms
18m3(2m3−9)
Apply the distributive property
18m3×2m3−18m3×9
Multiply the terms
More Steps

Evaluate
18m3×2m3
Multiply the numbers
36m3×m3
Multiply the terms
More Steps

Evaluate
m3×m3
Use the product rule an×am=an+m to simplify the expression
m3+3
Add the numbers
m6
36m6
36m6−18m3×9
Solution
36m6−162m3
Show Solution

Find the roots
m1=0,m2=2336
Alternative Form
m1=0,m2≈1.650964
Evaluate
(2m3−9)(2m3×9)
To find the roots of the expression,set the expression equal to 0
(2m3−9)(2m3×9)=0
Multiply the terms
(2m3−9)×18m3=0
Multiply the terms
18m3(2m3−9)=0
Elimination the left coefficient
m3(2m3−9)=0
Separate the equation into 2 possible cases
m3=02m3−9=0
The only way a power can be 0 is when the base equals 0
m=02m3−9=0
Solve the equation
More Steps

Evaluate
2m3−9=0
Move the constant to the right-hand side and change its sign
2m3=0+9
Removing 0 doesn't change the value,so remove it from the expression
2m3=9
Divide both sides
22m3=29
Divide the numbers
m3=29
Take the 3-th root on both sides of the equation
3m3=329
Calculate
m=329
Simplify the root
More Steps

Evaluate
329
To take a root of a fraction,take the root of the numerator and denominator separately
3239
Multiply by the Conjugate
32×32239×322
Simplify
32×32239×34
Multiply the numbers
32×322336
Multiply the numbers
2336
m=2336
m=0m=2336
Solution
m1=0,m2=2336
Alternative Form
m1=0,m2≈1.650964
Show Solution
