Question
Simplify the expression
331p4+36625p3+6125p2−1249p−9
Evaluate
(2p2+619p+29)(631p2+21p−2)
Apply the distributive property
2p2×631p2+2p2×21p−2p2×2+619p×631p2+619p×21p−619p×2+29×631p2+29×21p−29×2
Multiply the terms
More Steps

Evaluate
2p2×631p2
Multiply the numbers
More Steps

Evaluate
2×631
Reduce the numbers
1×331
Multiply the numbers
331
331p2×p2
Multiply the terms
More Steps

Evaluate
p2×p2
Use the product rule an×am=an+m to simplify the expression
p2+2
Add the numbers
p4
331p4
331p4+2p2×21p−2p2×2+619p×631p2+619p×21p−619p×2+29×631p2+29×21p−29×2
Multiply the terms
More Steps

Evaluate
2p2×21p
Multiply the numbers
More Steps

Evaluate
2×21
Reduce the numbers
1×1
Simplify
1
p2×p
Use the product rule an×am=an+m to simplify the expression
p2+1
Add the numbers
p3
331p4+p3−2p2×2+619p×631p2+619p×21p−619p×2+29×631p2+29×21p−29×2
Multiply the numbers
331p4+p3−4p2+619p×631p2+619p×21p−619p×2+29×631p2+29×21p−29×2
Multiply the terms
More Steps

Evaluate
619p×631p2
Multiply the numbers
More Steps

Evaluate
619×631
To multiply the fractions,multiply the numerators and denominators separately
6×619×31
Multiply the numbers
6×6589
Multiply the numbers
36589
36589p×p2
Multiply the terms
More Steps

Evaluate
p×p2
Use the product rule an×am=an+m to simplify the expression
p1+2
Add the numbers
p3
36589p3
331p4+p3−4p2+36589p3+619p×21p−619p×2+29×631p2+29×21p−29×2
Multiply the terms
More Steps

Evaluate
619p×21p
Multiply the numbers
More Steps

Evaluate
619×21
To multiply the fractions,multiply the numerators and denominators separately
6×219
Multiply the numbers
1219
1219p×p
Multiply the terms
1219p2
331p4+p3−4p2+36589p3+1219p2−619p×2+29×631p2+29×21p−29×2
Multiply the numbers
More Steps

Evaluate
619×2
Reduce the numbers
319×1
Multiply the numbers
319
331p4+p3−4p2+36589p3+1219p2−319p+29×631p2+29×21p−29×2
Multiply the numbers
More Steps

Evaluate
29×631
Reduce the numbers
23×231
To multiply the fractions,multiply the numerators and denominators separately
2×23×31
Multiply the numbers
2×293
Multiply the numbers
493
331p4+p3−4p2+36589p3+1219p2−319p+493p2+29×21p−29×2
Multiply the numbers
More Steps

Evaluate
29×21
To multiply the fractions,multiply the numerators and denominators separately
2×29
Multiply the numbers
49
331p4+p3−4p2+36589p3+1219p2−319p+493p2+49p−29×2
Multiply the numbers
More Steps

Evaluate
29×2
Reduce the numbers
9×1
Simplify
9
331p4+p3−4p2+36589p3+1219p2−319p+493p2+49p−9
Add the terms
More Steps

Evaluate
p3+36589p3
Collect like terms by calculating the sum or difference of their coefficients
(1+36589)p3
Add the numbers
More Steps

Evaluate
1+36589
Reduce fractions to a common denominator
3636+36589
Write all numerators above the common denominator
3636+589
Add the numbers
36625
36625p3
331p4+36625p3−4p2+1219p2−319p+493p2+49p−9
Add the terms
More Steps

Evaluate
−4p2+1219p2+493p2
Collect like terms by calculating the sum or difference of their coefficients
(−4+1219+493)p2
Add the numbers
More Steps

Evaluate
−4+1219+493
Reduce fractions to a common denominator
−124×12+1219+4×393×3
Multiply the numbers
−124×12+1219+1293×3
Write all numerators above the common denominator
12−4×12+19+93×3
Multiply the numbers
12−48+19+93×3
Multiply the numbers
12−48+19+279
Add the numbers
12250
Cancel out the common factor 2
6125
6125p2
331p4+36625p3+6125p2−319p+49p−9
Solution
More Steps

Evaluate
−319p+49p
Collect like terms by calculating the sum or difference of their coefficients
(−319+49)p
Add the numbers
More Steps

Evaluate
−319+49
Reduce fractions to a common denominator
−3×419×4+4×39×3
Multiply the numbers
−1219×4+4×39×3
Multiply the numbers
−1219×4+129×3
Write all numerators above the common denominator
12−19×4+9×3
Multiply the numbers
12−76+9×3
Multiply the numbers
12−76+27
Add the numbers
12−49
Use b−a=−ba=−ba to rewrite the fraction
−1249
−1249p
331p4+36625p3+6125p2−1249p−9
Show Solution

Factor the expression
361(12p2+19p+27)(31p2+3p−12)
Evaluate
(2p2+619p+29)(631p2+21p−2)
Factor the expression
61(12p2+19p+27)(631p2+21p−2)
Factor the expression
61(12p2+19p+27)×61(31p2+3p−12)
Solution
361(12p2+19p+27)(31p2+3p−12)
Show Solution

Find the roots
p1=−623+1497,p2=62−3+1497,p3=−2419−24935i,p4=−2419+24935i
Alternative Form
p1≈−0.672437,p2≈0.575663,p3≈−0.7916˙−1.274074i,p4≈−0.7916˙+1.274074i
Evaluate
(2p2+619p+29)(631p2+21p−2)
To find the roots of the expression,set the expression equal to 0
(2p2+619p+29)(631p2+21p−2)=0
Separate the equation into 2 possible cases
2p2+619p+29=0631p2+21p−2=0
Solve the equation
More Steps

Evaluate
2p2+619p+29=0
Multiply both sides
6(2p2+619p+29)=6×0
Calculate
12p2+19p+27=0
Substitute a=12,b=19 and c=27 into the quadratic formula p=2a−b±b2−4ac
p=2×12−19±192−4×12×27
Simplify the expression
p=24−19±192−4×12×27
Simplify the expression
More Steps

Evaluate
192−4×12×27
Multiply the terms
192−1296
Evaluate the power
361−1296
Subtract the numbers
−935
p=24−19±−935
Simplify the radical expression
More Steps

Evaluate
−935
Evaluate the power
935×−1
Evaluate the power
935×i
p=24−19±935×i
Separate the equation into 2 possible cases
p=24−19+935×ip=24−19−935×i
Simplify the expression
p=−2419+24935ip=24−19−935×i
Simplify the expression
p=−2419+24935ip=−2419−24935i
p=−2419+24935ip=−2419−24935i631p2+21p−2=0
Solve the equation
More Steps

Evaluate
631p2+21p−2=0
Multiply both sides
6(631p2+21p−2)=6×0
Calculate
31p2+3p−12=0
Substitute a=31,b=3 and c=−12 into the quadratic formula p=2a−b±b2−4ac
p=2×31−3±32−4×31(−12)
Simplify the expression
p=62−3±32−4×31(−12)
Simplify the expression
More Steps

Evaluate
32−4×31(−12)
Multiply
32−(−1488)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+1488
Evaluate the power
9+1488
Add the numbers
1497
p=62−3±1497
Separate the equation into 2 possible cases
p=62−3+1497p=62−3−1497
Use b−a=−ba=−ba to rewrite the fraction
p=62−3+1497p=−623+1497
p=−2419+24935ip=−2419−24935ip=62−3+1497p=−623+1497
Solution
p1=−623+1497,p2=62−3+1497,p3=−2419−24935i,p4=−2419+24935i
Alternative Form
p1≈−0.672437,p2≈0.575663,p3≈−0.7916˙−1.274074i,p4≈−0.7916˙+1.274074i
Show Solution
