Question
Simplify the expression
4q3−4q2
Evaluate
2q2(2q−2)
Apply the distributive property
2q2×2q−2q2×2
Multiply the terms
More Steps

Evaluate
2q2×2q
Multiply the numbers
4q2×q
Multiply the terms
More Steps

Evaluate
q2×q
Use the product rule an×am=an+m to simplify the expression
q2+1
Add the numbers
q3
4q3
4q3−2q2×2
Solution
4q3−4q2
Show Solution

Factor the expression
4q2(q−1)
Evaluate
2q2(2q−2)
Factor the expression
2q2×2(q−1)
Solution
4q2(q−1)
Show Solution

Find the roots
q1=0,q2=1
Evaluate
(2q2)(2q−2)
To find the roots of the expression,set the expression equal to 0
(2q2)(2q−2)=0
Multiply the terms
2q2(2q−2)=0
Elimination the left coefficient
q2(2q−2)=0
Separate the equation into 2 possible cases
q2=02q−2=0
The only way a power can be 0 is when the base equals 0
q=02q−2=0
Solve the equation
More Steps

Evaluate
2q−2=0
Move the constant to the right-hand side and change its sign
2q=0+2
Removing 0 doesn't change the value,so remove it from the expression
2q=2
Divide both sides
22q=22
Divide the numbers
q=22
Divide the numbers
More Steps

Evaluate
22
Reduce the numbers
11
Calculate
1
q=1
q=0q=1
Solution
q1=0,q2=1
Show Solution
