Question
Simplify the expression
2s2−4s
Evaluate
(2s−4)(s×1)
Remove the parentheses
(2s−4)s×1
Rewrite the expression
(2s−4)s
Multiply the terms
s(2s−4)
Apply the distributive property
s×2s−s×4
Multiply the terms
More Steps

Evaluate
s×2s
Use the commutative property to reorder the terms
2s×s
Multiply the terms
2s2
2s2−s×4
Solution
2s2−4s
Show Solution

Factor the expression
2s(s−2)
Evaluate
(2s−4)(s×1)
Remove the parentheses
(2s−4)s×1
Any expression multiplied by 1 remains the same
(2s−4)s
Multiply the terms
s(2s−4)
Factor the expression
s×2(s−2)
Solution
2s(s−2)
Show Solution

Find the roots
s1=0,s2=2
Evaluate
(2s−4)(s×1)
To find the roots of the expression,set the expression equal to 0
(2s−4)(s×1)=0
Any expression multiplied by 1 remains the same
(2s−4)s=0
Multiply the terms
s(2s−4)=0
Separate the equation into 2 possible cases
s=02s−4=0
Solve the equation
More Steps

Evaluate
2s−4=0
Move the constant to the right-hand side and change its sign
2s=0+4
Removing 0 doesn't change the value,so remove it from the expression
2s=4
Divide both sides
22s=24
Divide the numbers
s=24
Divide the numbers
More Steps

Evaluate
24
Reduce the numbers
12
Calculate
2
s=2
s=0s=2
Solution
s1=0,s2=2
Show Solution
