Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=43−315,x2=43+315
Alternative Form
x1≈−2.154738,x2≈3.654738
Evaluate
32x−3×34x=7
Multiply the terms
More Steps

Multiply the terms
32x−3×34x
Multiply the terms
3×3(2x−3)×4x
Multiply the terms
3×34x(2x−3)
Multiply the terms
94x(2x−3)
94x(2x−3)=7
Rewrite the expression
98x2−34x=7
Move the expression to the left side
98x2−34x−7=0
Multiply both sides
9(98x2−34x−7)=9×0
Calculate
8x2−12x−63=0
Substitute a=8,b=−12 and c=−63 into the quadratic formula x=2a−b±b2−4ac
x=2×812±(−12)2−4×8(−63)
Simplify the expression
x=1612±(−12)2−4×8(−63)
Simplify the expression
More Steps

Evaluate
(−12)2−4×8(−63)
Multiply
More Steps

Multiply the terms
4×8(−63)
Rewrite the expression
−4×8×63
Multiply the terms
−2016
(−12)2−(−2016)
Rewrite the expression
122−(−2016)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
122+2016
Evaluate the power
144+2016
Add the numbers
2160
x=1612±2160
Simplify the radical expression
More Steps

Evaluate
2160
Write the expression as a product where the root of one of the factors can be evaluated
144×15
Write the number in exponential form with the base of 12
122×15
The root of a product is equal to the product of the roots of each factor
122×15
Reduce the index of the radical and exponent with 2
1215
x=1612±1215
Separate the equation into 2 possible cases
x=1612+1215x=1612−1215
Simplify the expression
More Steps

Evaluate
x=1612+1215
Divide the terms
More Steps

Evaluate
1612+1215
Rewrite the expression
164(3+315)
Cancel out the common factor 4
43+315
x=43+315
x=43+315x=1612−1215
Simplify the expression
More Steps

Evaluate
x=1612−1215
Divide the terms
More Steps

Evaluate
1612−1215
Rewrite the expression
164(3−315)
Cancel out the common factor 4
43−315
x=43−315
x=43+315x=43−315
Solution
x1=43−315,x2=43+315
Alternative Form
x1≈−2.154738,x2≈3.654738
Show Solution
