Question
Solve the equation
x1=36−221,x2=0,x3=36+221
Alternative Form
x1≈−1.05505,x2=0,x3≈5.05505
Evaluate
32x×1=4x2×2x−4
Multiply the terms
32x=4x2×2x−4
Multiply the terms
More Steps

Multiply the terms
4x2×2x−4
Multiply the terms
4×2x2(x−4)
Multiply the terms
8x2(x−4)
32x=8x2(x−4)
Cross multiply
2x×8=3x2(x−4)
Simplify the equation
16x=3x2(x−4)
Expand the expression
More Steps

Evaluate
3x2(x−4)
Apply the distributive property
3x2×x−3x2×4
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
3x3−3x2×4
Multiply the numbers
3x3−12x2
16x=3x3−12x2
Move the expression to the left side
16x−(3x3−12x2)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
16x−3x3+12x2=0
Factor the expression
x(16−3x2+12x)=0
Separate the equation into 2 possible cases
x=016−3x2+12x=0
Solve the equation
More Steps

Evaluate
16−3x2+12x=0
Rewrite in standard form
−3x2+12x+16=0
Multiply both sides
3x2−12x−16=0
Substitute a=3,b=−12 and c=−16 into the quadratic formula x=2a−b±b2−4ac
x=2×312±(−12)2−4×3(−16)
Simplify the expression
x=612±(−12)2−4×3(−16)
Simplify the expression
More Steps

Evaluate
(−12)2−4×3(−16)
Multiply
(−12)2−(−192)
Rewrite the expression
122−(−192)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
122+192
Evaluate the power
144+192
Add the numbers
336
x=612±336
Simplify the radical expression
More Steps

Evaluate
336
Write the expression as a product where the root of one of the factors can be evaluated
16×21
Write the number in exponential form with the base of 4
42×21
The root of a product is equal to the product of the roots of each factor
42×21
Reduce the index of the radical and exponent with 2
421
x=612±421
Separate the equation into 2 possible cases
x=612+421x=612−421
Simplify the expression
x=36+221x=612−421
Simplify the expression
x=36+221x=36−221
x=0x=36+221x=36−221
Solution
x1=36−221,x2=0,x3=36+221
Alternative Form
x1≈−1.05505,x2=0,x3≈5.05505
Show Solution
