Question
Simplify the expression
2x+6y−5
Evaluate
(2x×1)(12y−9)−(4x−1)(6y−5)
Remove the parentheses
2x×1×(12y−9)−(4x−1)(6y−5)
Any expression multiplied by 1 remains the same
2x(12y−9)−(4x−1)(6y−5)
Rewrite the expression
2x(12y−9)+(−4x+1)(6y−5)
Expand the expression
More Steps

Calculate
2x(12y−9)
Apply the distributive property
2x×12y−2x×9
Multiply the numbers
24xy−2x×9
Multiply the numbers
24xy−18x
24xy−18x+(−4x+1)(6y−5)
Expand the expression
More Steps

Calculate
(−4x+1)(6y−5)
Apply the distributive property
−4x×6y−(−4x×5)+1×6y−1×5
Multiply the numbers
−24xy−(−4x×5)+1×6y−1×5
Multiply the numbers
−24xy−(−20x)+1×6y−1×5
Any expression multiplied by 1 remains the same
−24xy−(−20x)+6y−1×5
Any expression multiplied by 1 remains the same
−24xy−(−20x)+6y−5
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−24xy+20x+6y−5
24xy−18x−24xy+20x+6y−5
The sum of two opposites equals 0
More Steps

Evaluate
24xy−24xy
Collect like terms
(24−24)xy
Add the coefficients
0×xy
Calculate
0
0−18x+20x+6y−5
Remove 0
−18x+20x+6y−5
Solution
More Steps

Evaluate
−18x+20x
Collect like terms by calculating the sum or difference of their coefficients
(−18+20)x
Add the numbers
2x
2x+6y−5
Show Solution
