Question
Simplify the expression
900x3−5400x2
Evaluate
(2x×15)×6x(5x−30)
Remove the parentheses
2x×15×6x(5x−30)
Multiply the terms
More Steps

Evaluate
2×15×6
Multiply the terms
30×6
Multiply the numbers
180
180x×x(5x−30)
Multiply the terms
180x2(5x−30)
Apply the distributive property
180x2×5x−180x2×30
Multiply the terms
More Steps

Evaluate
180x2×5x
Multiply the numbers
900x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
900x3
900x3−180x2×30
Solution
900x3−5400x2
Show Solution

Factor the expression
900x2(x−6)
Evaluate
(2x×15)×6x(5x−30)
Remove the parentheses
2x×15×6x(5x−30)
Multiply the terms
30x×6x(5x−30)
Multiply the terms
180x×x(5x−30)
Multiply the terms
180x2(5x−30)
Factor the expression
180x2×5(x−6)
Solution
900x2(x−6)
Show Solution

Find the roots
x1=0,x2=6
Evaluate
(2x×15)×6x(5x−30)
To find the roots of the expression,set the expression equal to 0
(2x×15)×6x(5x−30)=0
Multiply the terms
30x×6x(5x−30)=0
Multiply
More Steps

Multiply the terms
30x×6x(5x−30)
Multiply the terms
180x×x(5x−30)
Multiply the terms
180x2(5x−30)
180x2(5x−30)=0
Elimination the left coefficient
x2(5x−30)=0
Separate the equation into 2 possible cases
x2=05x−30=0
The only way a power can be 0 is when the base equals 0
x=05x−30=0
Solve the equation
More Steps

Evaluate
5x−30=0
Move the constant to the right-hand side and change its sign
5x=0+30
Removing 0 doesn't change the value,so remove it from the expression
5x=30
Divide both sides
55x=530
Divide the numbers
x=530
Divide the numbers
More Steps

Evaluate
530
Reduce the numbers
16
Calculate
6
x=6
x=0x=6
Solution
x1=0,x2=6
Show Solution
