Question
Simplify the expression
16x5−14x2−48x4+42x−32x3+28
Evaluate
(2x2−6x−4)(4x2×2x−7)
Multiply
More Steps

Evaluate
4x2×2x
Multiply the terms
8x2×x
Multiply the terms with the same base by adding their exponents
8x2+1
Add the numbers
8x3
(2x2−6x−4)(8x3−7)
Apply the distributive property
2x2×8x3−2x2×7−6x×8x3−(−6x×7)−4×8x3−(−4×7)
Multiply the terms
More Steps

Evaluate
2x2×8x3
Multiply the numbers
16x2×x3
Multiply the terms
More Steps

Evaluate
x2×x3
Use the product rule an×am=an+m to simplify the expression
x2+3
Add the numbers
x5
16x5
16x5−2x2×7−6x×8x3−(−6x×7)−4×8x3−(−4×7)
Multiply the numbers
16x5−14x2−6x×8x3−(−6x×7)−4×8x3−(−4×7)
Multiply the terms
More Steps

Evaluate
−6x×8x3
Multiply the numbers
−48x×x3
Multiply the terms
More Steps

Evaluate
x×x3
Use the product rule an×am=an+m to simplify the expression
x1+3
Add the numbers
x4
−48x4
16x5−14x2−48x4−(−6x×7)−4×8x3−(−4×7)
Multiply the numbers
16x5−14x2−48x4−(−42x)−4×8x3−(−4×7)
Multiply the numbers
16x5−14x2−48x4−(−42x)−32x3−(−4×7)
Multiply the numbers
16x5−14x2−48x4−(−42x)−32x3−(−28)
Solution
16x5−14x2−48x4+42x−32x3+28
Show Solution

Factor the expression
2(x2−3x−2)(8x3−7)
Evaluate
(2x2−6x−4)(4x2×2x−7)
Multiply
More Steps

Evaluate
4x2×2x
Multiply the terms
8x2×x
Multiply the terms with the same base by adding their exponents
8x2+1
Add the numbers
8x3
(2x2−6x−4)(8x3−7)
Solution
2(x2−3x−2)(8x3−7)
Show Solution

Find the roots
x1=23−17,x2=237,x3=23+17
Alternative Form
x1≈−0.561553,x2≈0.956466,x3≈3.561553
Evaluate
(2x2−6x−4)(4x2×2x−7)
To find the roots of the expression,set the expression equal to 0
(2x2−6x−4)(4x2×2x−7)=0
Multiply
More Steps

Multiply the terms
4x2×2x
Multiply the terms
8x2×x
Multiply the terms with the same base by adding their exponents
8x2+1
Add the numbers
8x3
(2x2−6x−4)(8x3−7)=0
Separate the equation into 2 possible cases
2x2−6x−4=08x3−7=0
Solve the equation
More Steps

Evaluate
2x2−6x−4=0
Substitute a=2,b=−6 and c=−4 into the quadratic formula x=2a−b±b2−4ac
x=2×26±(−6)2−4×2(−4)
Simplify the expression
x=46±(−6)2−4×2(−4)
Simplify the expression
More Steps

Evaluate
(−6)2−4×2(−4)
Multiply
(−6)2−(−32)
Rewrite the expression
62−(−32)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
62+32
Evaluate the power
36+32
Add the numbers
68
x=46±68
Simplify the radical expression
More Steps

Evaluate
68
Write the expression as a product where the root of one of the factors can be evaluated
4×17
Write the number in exponential form with the base of 2
22×17
The root of a product is equal to the product of the roots of each factor
22×17
Reduce the index of the radical and exponent with 2
217
x=46±217
Separate the equation into 2 possible cases
x=46+217x=46−217
Simplify the expression
x=23+17x=46−217
Simplify the expression
x=23+17x=23−17
x=23+17x=23−178x3−7=0
Solve the equation
More Steps

Evaluate
8x3−7=0
Move the constant to the right-hand side and change its sign
8x3=0+7
Removing 0 doesn't change the value,so remove it from the expression
8x3=7
Divide both sides
88x3=87
Divide the numbers
x3=87
Take the 3-th root on both sides of the equation
3x3=387
Calculate
x=387
Simplify the root
More Steps

Evaluate
387
To take a root of a fraction,take the root of the numerator and denominator separately
3837
Simplify the radical expression
237
x=237
x=23+17x=23−17x=237
Solution
x1=23−17,x2=237,x3=23+17
Alternative Form
x1≈−0.561553,x2≈0.956466,x3≈3.561553
Show Solution
