Question
Simplify the expression
30x4−40x3
Evaluate
(2x2×5x×1)(3x−4)
Remove the parentheses
2x2×5x×1×(3x−4)
Rewrite the expression
2x2×5x(3x−4)
Multiply the terms
10x2×x(3x−4)
Multiply the terms with the same base by adding their exponents
10x2+1(3x−4)
Add the numbers
10x3(3x−4)
Apply the distributive property
10x3×3x−10x3×4
Multiply the terms
More Steps

Evaluate
10x3×3x
Multiply the numbers
30x3×x
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
30x4
30x4−10x3×4
Solution
30x4−40x3
Show Solution

Find the roots
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Evaluate
(2x2×5x×1)(3x−4)
To find the roots of the expression,set the expression equal to 0
(2x2×5x×1)(3x−4)=0
Multiply the terms
More Steps

Multiply the terms
2x2×5x×1
Rewrite the expression
2x2×5x
Multiply the terms
10x2×x
Multiply the terms with the same base by adding their exponents
10x2+1
Add the numbers
10x3
10x3(3x−4)=0
Elimination the left coefficient
x3(3x−4)=0
Separate the equation into 2 possible cases
x3=03x−4=0
The only way a power can be 0 is when the base equals 0
x=03x−4=0
Solve the equation
More Steps

Evaluate
3x−4=0
Move the constant to the right-hand side and change its sign
3x=0+4
Removing 0 doesn't change the value,so remove it from the expression
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=0x=34
Solution
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Show Solution
