Question
Simplify the expression
16x6−64x5+64x4
Evaluate
2x2(2x−4)×2x2(2x−4)
Multiply the terms
4x2(2x−4)x2(2x−4)
Multiply the terms with the same base by adding their exponents
4x2+2(2x−4)(2x−4)
Add the numbers
4x4(2x−4)(2x−4)
Multiply the terms
4x4(2x−4)2
Expand the expression
More Steps

Evaluate
(2x−4)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(2x)2−2×2x×4+42
Calculate
4x2−16x+16
4x4(4x2−16x+16)
Apply the distributive property
4x4×4x2−4x4×16x+4x4×16
Multiply the terms
More Steps

Evaluate
4x4×4x2
Multiply the numbers
16x4×x2
Multiply the terms
More Steps

Evaluate
x4×x2
Use the product rule an×am=an+m to simplify the expression
x4+2
Add the numbers
x6
16x6
16x6−4x4×16x+4x4×16
Multiply the terms
More Steps

Evaluate
4x4×16x
Multiply the numbers
64x4×x
Multiply the terms
More Steps

Evaluate
x4×x
Use the product rule an×am=an+m to simplify the expression
x4+1
Add the numbers
x5
64x5
16x6−64x5+4x4×16
Solution
16x6−64x5+64x4
Show Solution

Factor the expression
16x4(x−2)2
Evaluate
2x2(2x−4)×2x2(2x−4)
Multiply the terms
4x2(2x−4)x2(2x−4)
Multiply the terms with the same base by adding their exponents
4x2+2(2x−4)(2x−4)
Add the numbers
4x4(2x−4)(2x−4)
Multiply the terms
4x4(2x−4)2
Factor the expression
More Steps

Evaluate
(2x−4)2
Factor the expression
(2(x−2))2
Evaluate the power
4(x−2)2
4x4×4(x−2)2
Solution
16x4(x−2)2
Show Solution

Find the roots
x1=0,x2=2
Evaluate
(2x2)(2x−4)(2x2)(2x−4)
To find the roots of the expression,set the expression equal to 0
(2x2)(2x−4)(2x2)(2x−4)=0
Multiply the terms
2x2(2x−4)(2x2)(2x−4)=0
Multiply the terms
2x2(2x−4)×2x2(2x−4)=0
Multiply the terms
More Steps

Multiply the terms
2x2(2x−4)×2x2(2x−4)
Multiply the terms
4x2(2x−4)x2(2x−4)
Multiply the terms with the same base by adding their exponents
4x2+2(2x−4)(2x−4)
Add the numbers
4x4(2x−4)(2x−4)
Multiply the terms
4x4(2x−4)2
4x4(2x−4)2=0
Elimination the left coefficient
x4(2x−4)2=0
Separate the equation into 2 possible cases
x4=0(2x−4)2=0
The only way a power can be 0 is when the base equals 0
x=0(2x−4)2=0
Solve the equation
More Steps

Evaluate
(2x−4)2=0
The only way a power can be 0 is when the base equals 0
2x−4=0
Move the constant to the right-hand side and change its sign
2x=0+4
Removing 0 doesn't change the value,so remove it from the expression
2x=4
Divide both sides
22x=24
Divide the numbers
x=24
Divide the numbers
More Steps

Evaluate
24
Reduce the numbers
12
Calculate
2
x=2
x=0x=2
Solution
x1=0,x2=2
Show Solution
