Question
Simplify the expression
2x4−6x2
Evaluate
(2x2×1)(x2−3)
Remove the parentheses
2x2×1×(x2−3)
Any expression multiplied by 1 remains the same
2x2(x2−3)
Apply the distributive property
2x2×x2−2x2×3
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
2x4−2x2×3
Solution
2x4−6x2
Show Solution

Find the roots
x1=−3,x2=0,x3=3
Alternative Form
x1≈−1.732051,x2=0,x3≈1.732051
Evaluate
(2x2×1)(x2−3)
To find the roots of the expression,set the expression equal to 0
(2x2×1)(x2−3)=0
Multiply the terms
2x2(x2−3)=0
Elimination the left coefficient
x2(x2−3)=0
Separate the equation into 2 possible cases
x2=0x2−3=0
The only way a power can be 0 is when the base equals 0
x=0x2−3=0
Solve the equation
More Steps

Evaluate
x2−3=0
Move the constant to the right-hand side and change its sign
x2=0+3
Removing 0 doesn't change the value,so remove it from the expression
x2=3
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±3
Separate the equation into 2 possible cases
x=3x=−3
x=0x=3x=−3
Solution
x1=−3,x2=0,x3=3
Alternative Form
x1≈−1.732051,x2=0,x3≈1.732051
Show Solution
