Question
Simplify the expression
16x2+10
Evaluate
(2x2×5)×2−(2x2−5)×2
Remove the parentheses
2x2×5×2−(2x2−5)×2
Multiply the terms
More Steps

Multiply the terms
2x2×5×2
Multiply the terms
More Steps

Evaluate
2×5×2
Multiply the terms
10×2
Multiply the numbers
20
20x2
20x2−(2x2−5)×2
Multiply the terms
20x2−2(2x2−5)
Expand the expression
More Steps

Calculate
−2(2x2−5)
Apply the distributive property
−2×2x2−(−2×5)
Multiply the numbers
−4x2−(−2×5)
Multiply the numbers
−4x2−(−10)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4x2+10
20x2−4x2+10
Solution
More Steps

Evaluate
20x2−4x2
Collect like terms by calculating the sum or difference of their coefficients
(20−4)x2
Subtract the numbers
16x2
16x2+10
Show Solution

Factor the expression
2(8x2+5)
Evaluate
(2x2×5)×2−(2x2−5)×2
Remove the parentheses
2x2×5×2−(2x2−5)×2
Multiply the terms
10x2×2−(2x2−5)×2
Multiply the numbers
More Steps

Evaluate
10×2
Multiply the numbers
20
Evaluate
20x2
20x2−(2x2−5)×2
Multiply the terms
20x2−2(2x2−5)
Simplify
More Steps

Evaluate
−2(2x2−5)
Apply the distributive property
−2×2x2−2(−5)
Multiply the terms
−4x2−2(−5)
Multiply the terms
More Steps

Evaluate
−2(−5)
Multiplying or dividing an even number of negative terms equals a positive
2×5
Multiply the numbers
10
−4x2+10
20x2−4x2+10
Subtract the terms
More Steps

Evaluate
20x2−4x2
Collect like terms by calculating the sum or difference of their coefficients
(20−4)x2
Subtract the numbers
16x2
16x2+10
Solution
2(8x2+5)
Show Solution

Find the roots
x1=−410i,x2=410i
Alternative Form
x1≈−0.790569i,x2≈0.790569i
Evaluate
(2x2×5)×2−(2x2−5)×2
To find the roots of the expression,set the expression equal to 0
(2x2×5)×2−(2x2−5)×2=0
Multiply the terms
10x2×2−(2x2−5)×2=0
Multiply the numbers
20x2−(2x2−5)×2=0
Multiply the terms
20x2−2(2x2−5)=0
Calculate
More Steps

Evaluate
20x2−2(2x2−5)
Expand the expression
More Steps

Calculate
−2(2x2−5)
Apply the distributive property
−2×2x2−(−2×5)
Multiply the numbers
−4x2−(−2×5)
Multiply the numbers
−4x2−(−10)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4x2+10
20x2−4x2+10
Subtract the terms
More Steps

Evaluate
20x2−4x2
Collect like terms by calculating the sum or difference of their coefficients
(20−4)x2
Subtract the numbers
16x2
16x2+10
16x2+10=0
Move the constant to the right-hand side and change its sign
16x2=0−10
Removing 0 doesn't change the value,so remove it from the expression
16x2=−10
Divide both sides
1616x2=16−10
Divide the numbers
x2=16−10
Divide the numbers
More Steps

Evaluate
16−10
Cancel out the common factor 2
8−5
Use b−a=−ba=−ba to rewrite the fraction
−85
x2=−85
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±−85
Simplify the expression
More Steps

Evaluate
−85
Evaluate the power
85×−1
Evaluate the power
85×i
Evaluate the power
More Steps

Evaluate
85
To take a root of a fraction,take the root of the numerator and denominator separately
85
Simplify the radical expression
225
Multiply by the Conjugate
22×25×2
Multiply the numbers
22×210
Multiply the numbers
410
410i
x=±410i
Separate the equation into 2 possible cases
x=410ix=−410i
Solution
x1=−410i,x2=410i
Alternative Form
x1≈−0.790569i,x2≈0.790569i
Show Solution
