Question
Simplify the expression
6x4−4x3
Evaluate
2x3(3x−2)
Apply the distributive property
2x3×3x−2x3×2
Multiply the terms
More Steps

Evaluate
2x3×3x
Multiply the numbers
6x3×x
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
6x4
6x4−2x3×2
Solution
6x4−4x3
Show Solution

Find the roots
x1=0,x2=32
Alternative Form
x1=0,x2=0.6˙
Evaluate
(2x3)(3x−2)
To find the roots of the expression,set the expression equal to 0
(2x3)(3x−2)=0
Multiply the terms
2x3(3x−2)=0
Elimination the left coefficient
x3(3x−2)=0
Separate the equation into 2 possible cases
x3=03x−2=0
The only way a power can be 0 is when the base equals 0
x=03x−2=0
Solve the equation
More Steps

Evaluate
3x−2=0
Move the constant to the right-hand side and change its sign
3x=0+2
Removing 0 doesn't change the value,so remove it from the expression
3x=2
Divide both sides
33x=32
Divide the numbers
x=32
x=0x=32
Solution
x1=0,x2=32
Alternative Form
x1=0,x2=0.6˙
Show Solution
