Question
Simplify the expression
12x3−4x2
Evaluate
2x×x(6x−2)
Multiply the terms
2x2(6x−2)
Apply the distributive property
2x2×6x−2x2×2
Multiply the terms
More Steps

Evaluate
2x2×6x
Multiply the numbers
12x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
12x3
12x3−2x2×2
Solution
12x3−4x2
Show Solution

Factor the expression
4x2(3x−1)
Evaluate
2x×x(6x−2)
Multiply the terms
2x2(6x−2)
Factor the expression
2x2×2(3x−1)
Solution
4x2(3x−1)
Show Solution

Find the roots
x1=0,x2=31
Alternative Form
x1=0,x2=0.3˙
Evaluate
(2x)x(6x−2)
To find the roots of the expression,set the expression equal to 0
(2x)x(6x−2)=0
Multiply the terms
2x×x(6x−2)=0
Multiply the terms
2x2(6x−2)=0
Elimination the left coefficient
x2(6x−2)=0
Separate the equation into 2 possible cases
x2=06x−2=0
The only way a power can be 0 is when the base equals 0
x=06x−2=0
Solve the equation
More Steps

Evaluate
6x−2=0
Move the constant to the right-hand side and change its sign
6x=0+2
Removing 0 doesn't change the value,so remove it from the expression
6x=2
Divide both sides
66x=62
Divide the numbers
x=62
Cancel out the common factor 2
x=31
x=0x=31
Solution
x1=0,x2=31
Alternative Form
x1=0,x2=0.3˙
Show Solution
