Question
Simplify the expression
6x3−9x2+6x−7x4
Evaluate
(2x−1)×3x2−6x(x−1)−7x4
Multiply the terms
3x2(2x−1)−6x(x−1)−7x4
Expand the expression
More Steps

Calculate
3x2(2x−1)
Apply the distributive property
3x2×2x−3x2×1
Multiply the terms
More Steps

Evaluate
3x2×2x
Multiply the numbers
6x2×x
Multiply the terms
6x3
6x3−3x2×1
Any expression multiplied by 1 remains the same
6x3−3x2
6x3−3x2−6x(x−1)−7x4
Expand the expression
More Steps

Calculate
−6x(x−1)
Apply the distributive property
−6x×x−(−6x×1)
Multiply the terms
−6x2−(−6x×1)
Any expression multiplied by 1 remains the same
−6x2−(−6x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6x2+6x
6x3−3x2−6x2+6x−7x4
Solution
More Steps

Evaluate
−3x2−6x2
Collect like terms by calculating the sum or difference of their coefficients
(−3−6)x2
Subtract the numbers
−9x2
6x3−9x2+6x−7x4
Show Solution

Factor the expression
x(6x2−9x+6−7x3)
Evaluate
(2x−1)×3x2−6x(x−1)−7x4
Multiply the terms
3x2(2x−1)−6x(x−1)−7x4
Simplify
More Steps

Evaluate
3x2(2x−1)
Apply the distributive property
3x2×2x+3x2(−1)
Multiply the terms
More Steps

Evaluate
3x2×2x
Multiply the numbers
6x2×x
Multiply the terms
6x3
6x3+3x2(−1)
Multiply the terms
6x3−3x2
6x3−3x2−6x(x−1)−7x4
Simplify
More Steps

Evaluate
−6x(x−1)
Apply the distributive property
−6x×x−6x(−1)
Multiply the terms
−6x2−6x(−1)
Multiply the terms
−6x2+6x
6x3−3x2−6x2+6x−7x4
Subtract the terms
More Steps

Evaluate
−3x2−6x2
Collect like terms by calculating the sum or difference of their coefficients
(−3−6)x2
Subtract the numbers
−9x2
6x3−9x2+6x−7x4
Rewrite the expression
x×6x2−x×9x+x×6−x×7x3
Solution
x(6x2−9x+6−7x3)
Show Solution

Find the roots
x1=0,x2≈0.721569
Evaluate
(2x−1)(3x2)−6x(x−1)−7x4
To find the roots of the expression,set the expression equal to 0
(2x−1)(3x2)−6x(x−1)−7x4=0
Multiply the terms
(2x−1)×3x2−6x(x−1)−7x4=0
Multiply the terms
3x2(2x−1)−6x(x−1)−7x4=0
Subtract the terms
More Steps

Simplify
3x2(2x−1)−6x(x−1)
Expand the expression
More Steps

Calculate
3x2(2x−1)
Apply the distributive property
3x2×2x−3x2×1
Multiply the terms
6x3−3x2×1
Any expression multiplied by 1 remains the same
6x3−3x2
6x3−3x2−6x(x−1)
Expand the expression
More Steps

Calculate
−6x(x−1)
Apply the distributive property
−6x×x−(−6x×1)
Multiply the terms
−6x2−(−6x×1)
Any expression multiplied by 1 remains the same
−6x2−(−6x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6x2+6x
6x3−3x2−6x2+6x
Subtract the terms
More Steps

Evaluate
−3x2−6x2
Collect like terms by calculating the sum or difference of their coefficients
(−3−6)x2
Subtract the numbers
−9x2
6x3−9x2+6x
6x3−9x2+6x−7x4=0
Factor the expression
x(6x2−9x+6−7x3)=0
Separate the equation into 2 possible cases
x=06x2−9x+6−7x3=0
Solve the equation
x=0x≈0.721569
Solution
x1=0,x2≈0.721569
Show Solution
