Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
(2x−3)÷3=x2÷2
Rewrite the expression
32x−3=x2÷2
Rewrite the expression
32x−3=2x2
Swap the sides
2x2=32x−3
Rewrite the expression
21x2=32x−3
Rewrite the expression
21x2=32x−1
Move the expression to the left side
21x2−32x+1=0
Multiply both sides
6(21x2−32x+1)=6×0
Calculate
3x2−4x+6=0
Substitute a=3,b=−4 and c=6 into the quadratic formula x=2a−b±b2−4ac
x=2×34±(−4)2−4×3×6
Simplify the expression
x=64±(−4)2−4×3×6
Simplify the expression
More Steps

Evaluate
(−4)2−4×3×6
Multiply the terms
More Steps

Multiply the terms
4×3×6
Multiply the terms
12×6
Multiply the numbers
72
(−4)2−72
Rewrite the expression
42−72
Evaluate the power
16−72
Subtract the numbers
−56
x=64±−56
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=32−314i,x2=32+314i
Alternative Form
x1≈0.6˙−1.247219i,x2≈0.6˙+1.247219i
Evaluate
(2x−3)÷3=x2÷2
Rewrite the expression
32x−3=x2÷2
Rewrite the expression
32x−3=2x2
Swap the sides
2x2=32x−3
Rewrite the expression
21x2=32x−3
Rewrite the expression
21x2=32x−1
Move the expression to the left side
21x2−32x+1=0
Multiply both sides
6(21x2−32x+1)=6×0
Calculate
3x2−4x+6=0
Substitute a=3,b=−4 and c=6 into the quadratic formula x=2a−b±b2−4ac
x=2×34±(−4)2−4×3×6
Simplify the expression
x=64±(−4)2−4×3×6
Simplify the expression
More Steps

Evaluate
(−4)2−4×3×6
Multiply the terms
More Steps

Multiply the terms
4×3×6
Multiply the terms
12×6
Multiply the numbers
72
(−4)2−72
Rewrite the expression
42−72
Evaluate the power
16−72
Subtract the numbers
−56
x=64±−56
Simplify the radical expression
More Steps

Evaluate
−56
Evaluate the power
56×−1
Evaluate the power
56×i
Evaluate the power
More Steps

Evaluate
56
Write the expression as a product where the root of one of the factors can be evaluated
4×14
Write the number in exponential form with the base of 2
22×14
The root of a product is equal to the product of the roots of each factor
22×14
Reduce the index of the radical and exponent with 2
214
214×i
x=64±214×i
Separate the equation into 2 possible cases
x=64+214×ix=64−214×i
Simplify the expression
More Steps

Evaluate
x=64+214×i
Divide the terms
More Steps

Evaluate
64+214×i
Rewrite the expression
62(2+14×i)
Cancel out the common factor 2
32+14×i
Simplify
32+314i
x=32+314i
x=32+314ix=64−214×i
Simplify the expression
More Steps

Evaluate
x=64−214×i
Divide the terms
More Steps

Evaluate
64−214×i
Rewrite the expression
62(2−14×i)
Cancel out the common factor 2
32−14×i
Simplify
32−314i
x=32−314i
x=32+314ix=32−314i
Solution
x1=32−314i,x2=32+314i
Alternative Form
x1≈0.6˙−1.247219i,x2≈0.6˙+1.247219i
Show Solution
