Question
Simplify the expression
42x4−3x5
Evaluate
42x−3x2×x3
Multiply the terms
4(2x−3x2)x3
Multiply the terms
4x3(2x−3x2)
Solution
More Steps

Evaluate
x3(2x−3x2)
Apply the distributive property
x3×2x−x3×3x2
Multiply the terms
More Steps

Evaluate
x3×2x
Use the commutative property to reorder the terms
2x3×x
Multiply the terms
2x4
2x4−x3×3x2
Multiply the terms
More Steps

Evaluate
x3×3x2
Use the commutative property to reorder the terms
3x3×x2
Multiply the terms
3x5
2x4−3x5
42x4−3x5
Show Solution

Find the roots
x1=0,x2=32
Alternative Form
x1=0,x2=0.6˙
Evaluate
42x−3x2×x3
To find the roots of the expression,set the expression equal to 0
42x−3x2×x3=0
Multiply the terms
More Steps

Multiply the terms
42x−3x2×x3
Multiply the terms
4(2x−3x2)x3
Multiply the terms
4x3(2x−3x2)
4x3(2x−3x2)=0
Simplify
x3(2x−3x2)=0
Separate the equation into 2 possible cases
x3=02x−3x2=0
The only way a power can be 0 is when the base equals 0
x=02x−3x2=0
Solve the equation
More Steps

Evaluate
2x−3x2=0
Factor the expression
More Steps

Evaluate
2x−3x2
Rewrite the expression
x×2−x×3x
Factor out x from the expression
x(2−3x)
x(2−3x)=0
When the product of factors equals 0,at least one factor is 0
x=02−3x=0
Solve the equation for x
More Steps

Evaluate
2−3x=0
Move the constant to the right-hand side and change its sign
−3x=0−2
Removing 0 doesn't change the value,so remove it from the expression
−3x=−2
Change the signs on both sides of the equation
3x=2
Divide both sides
33x=32
Divide the numbers
x=32
x=0x=32
x=0x=0x=32
Find the union
x=0x=32
Solution
x1=0,x2=32
Alternative Form
x1=0,x2=0.6˙
Show Solution
