Question
Solve the equation
Solve for x
Solve for y
x=2−3y+y25
Evaluate
xy2x−5=3−y
Rewrite the expression
yx2x−5=3−y
Multiply both sides of the equation by LCD
yx2x−5×yx=(3−y)yx
Simplify the equation
2x−5=(3−y)yx
Simplify the equation
More Steps

Evaluate
(3−y)yx
Multiply the terms
More Steps

Evaluate
(3−y)y
Apply the distributive property
3y−y×y
Multiply the terms
3y−y2
(3y−y2)x
2x−5=(3y−y2)x
Move the variable to the left side
2x−5−(3y−y2)x=0
Subtract the terms
More Steps

Evaluate
2x−5−(3y−y2)x
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2x−5+(−3y+y2)x
Collect like terms by calculating the sum or difference of their coefficients
(2−3y+y2)x−5
(2−3y+y2)x−5=0
Move the constant to the right side
(2−3y+y2)x=0+5
Removing 0 doesn't change the value,so remove it from the expression
(2−3y+y2)x=5
Divide both sides
2−3y+y2(2−3y+y2)x=2−3y+y25
Solution
x=2−3y+y25
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
xy2x−5=3−y
To test if the graph of xy2x−5=3−y is symmetry with respect to the origin,substitute -x for x and -y for y
−x(−y)2(−x)−5=3−(−y)
Evaluate
More Steps

Evaluate
−x(−y)2(−x)−5
Multiply the numbers
−x(−y)−2x−5
Multiplying or dividing an even number of negative terms equals a positive
xy−2x−5
Use b−a=−ba=−ba to rewrite the fraction
−xy2x+5
−xy2x+5=3−(−y)
Evaluate
−xy2x+5=3+y
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=2x2−5x−x2y25y
Calculate
xy2x−5=3−y
Take the derivative of both sides
dxd(xy2x−5)=dxd(3−y)
Calculate the derivative
More Steps

Evaluate
dxd(xy2x−5)
Use differentiation rules
(xy)2dxd(2x−5)×xy−(2x−5)×dxd(xy)
Calculate the derivative
More Steps

Evaluate
dxd(2x−5)
Use differentiation rules
dxd(2x)+dxd(−5)
Evaluate the derivative
2+dxd(−5)
Use dxd(c)=0 to find derivative
2+0
Evaluate
2
(xy)22xy−(2x−5)×dxd(xy)
Calculate the derivative
More Steps

Evaluate
dxd(xy)
Use differentiation rules
dxd(x)×y+x×dxd(y)
Use dxdxn=nxn−1 to find derivative
y+x×dxd(y)
Evaluate the derivative
y+xdxdy
(xy)22xy−(2x−5)(y+xdxdy)
Calculate
More Steps

Evaluate
(2x−5)(y+xdxdy)
Apply the distributive property
2xy+2x×xdxdy−5y−5xdxdy
Multiply the terms
2xy+2x2dxdy−5y−5xdxdy
(xy)22xy−(2xy+2x2dxdy−5y−5xdxdy)
Calculate
More Steps

Calculate
2xy−(2xy+2x2dxdy−5y−5xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2xy−2xy−2x2dxdy+5y+5xdxdy
The sum of two opposites equals 0
0−2x2dxdy+5y+5xdxdy
Remove 0
−2x2dxdy+5y+5xdxdy
(xy)2−2x2dxdy+5y+5xdxdy
To raise a product to a power,raise each factor to that power
x2y2−2x2dxdy+5y+5xdxdy
x2y2−2x2dxdy+5y+5xdxdy=dxd(3−y)
Calculate the derivative
More Steps

Evaluate
dxd(3−y)
Use differentiation rules
dxd(3)+dxd(−y)
Use dxd(c)=0 to find derivative
0+dxd(−y)
Evaluate the derivative
More Steps

Evaluate
dxd(−y)
Use differentiation rules
dyd(−y)×dxdy
Evaluate the derivative
−dxdy
0−dxdy
Evaluate
−dxdy
x2y2−2x2dxdy+5y+5xdxdy=−dxdy
Cross multiply
−2x2dxdy+5y+5xdxdy=x2y2(−dxdy)
Simplify the equation
−2x2dxdy+5y+5xdxdy=−x2y2dxdy
Collect like terms by calculating the sum or difference of their coefficients
(−2x2+5x)dxdy+5y=−x2y2dxdy
Move the variable to the left side
(−2x2+5x)dxdy+5y+x2y2dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
(−2x2+5x+x2y2)dxdy+5y=0
Move the constant to the right side
(−2x2+5x+x2y2)dxdy=0−5y
Removing 0 doesn't change the value,so remove it from the expression
(−2x2+5x+x2y2)dxdy=−5y
Divide both sides
−2x2+5x+x2y2(−2x2+5x+x2y2)dxdy=−2x2+5x+x2y2−5y
Divide the numbers
dxdy=−2x2+5x+x2y2−5y
Use b−a=−ba=−ba to rewrite the fraction
dxdy=−−2x2+5x+x2y25y
Solution
More Steps

Evaluate
−−2x2+5x+x2y25y
Calculate
−2x2+5x+x2y2−5y
Use b−a=−ba=−ba to rewrite the fraction
2x2−5x−x2y25y
dxdy=2x2−5x−x2y25y
Show Solution

Find the second derivative
dx2d2y=8x5+150x3+6x5y4−60x4−12x5y2+60x4y2−125x2−15x4y4−75x3y2−x5y6200xy−250y−50y3x−40x2y+40x2y3−10x2y5
Calculate
xy2x−5=3−y
Take the derivative of both sides
dxd(xy2x−5)=dxd(3−y)
Calculate the derivative
More Steps

Evaluate
dxd(xy2x−5)
Use differentiation rules
(xy)2dxd(2x−5)×xy−(2x−5)×dxd(xy)
Calculate the derivative
More Steps

Evaluate
dxd(2x−5)
Use differentiation rules
dxd(2x)+dxd(−5)
Evaluate the derivative
2+dxd(−5)
Use dxd(c)=0 to find derivative
2+0
Evaluate
2
(xy)22xy−(2x−5)×dxd(xy)
Calculate the derivative
More Steps

Evaluate
dxd(xy)
Use differentiation rules
dxd(x)×y+x×dxd(y)
Use dxdxn=nxn−1 to find derivative
y+x×dxd(y)
Evaluate the derivative
y+xdxdy
(xy)22xy−(2x−5)(y+xdxdy)
Calculate
More Steps

Evaluate
(2x−5)(y+xdxdy)
Apply the distributive property
2xy+2x×xdxdy−5y−5xdxdy
Multiply the terms
2xy+2x2dxdy−5y−5xdxdy
(xy)22xy−(2xy+2x2dxdy−5y−5xdxdy)
Calculate
More Steps

Calculate
2xy−(2xy+2x2dxdy−5y−5xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2xy−2xy−2x2dxdy+5y+5xdxdy
The sum of two opposites equals 0
0−2x2dxdy+5y+5xdxdy
Remove 0
−2x2dxdy+5y+5xdxdy
(xy)2−2x2dxdy+5y+5xdxdy
To raise a product to a power,raise each factor to that power
x2y2−2x2dxdy+5y+5xdxdy
x2y2−2x2dxdy+5y+5xdxdy=dxd(3−y)
Calculate the derivative
More Steps

Evaluate
dxd(3−y)
Use differentiation rules
dxd(3)+dxd(−y)
Use dxd(c)=0 to find derivative
0+dxd(−y)
Evaluate the derivative
More Steps

Evaluate
dxd(−y)
Use differentiation rules
dyd(−y)×dxdy
Evaluate the derivative
−dxdy
0−dxdy
Evaluate
−dxdy
x2y2−2x2dxdy+5y+5xdxdy=−dxdy
Cross multiply
−2x2dxdy+5y+5xdxdy=x2y2(−dxdy)
Simplify the equation
−2x2dxdy+5y+5xdxdy=−x2y2dxdy
Collect like terms by calculating the sum or difference of their coefficients
(−2x2+5x)dxdy+5y=−x2y2dxdy
Move the variable to the left side
(−2x2+5x)dxdy+5y+x2y2dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
(−2x2+5x+x2y2)dxdy+5y=0
Move the constant to the right side
(−2x2+5x+x2y2)dxdy=0−5y
Removing 0 doesn't change the value,so remove it from the expression
(−2x2+5x+x2y2)dxdy=−5y
Divide both sides
−2x2+5x+x2y2(−2x2+5x+x2y2)dxdy=−2x2+5x+x2y2−5y
Divide the numbers
dxdy=−2x2+5x+x2y2−5y
Use b−a=−ba=−ba to rewrite the fraction
dxdy=−−2x2+5x+x2y25y
Simplify
More Steps

Evaluate
−−2x2+5x+x2y25y
Calculate
−2x2+5x+x2y2−5y
Use b−a=−ba=−ba to rewrite the fraction
2x2−5x−x2y25y
dxdy=2x2−5x−x2y25y
Take the derivative of both sides
dxd(dxdy)=dxd(2x2−5x−x2y25y)
Calculate the derivative
dx2d2y=dxd(2x2−5x−x2y25y)
Use differentiation rules
dx2d2y=(2x2−5x−x2y2)2dxd(5y)×(2x2−5x−x2y2)−5y×dxd(2x2−5x−x2y2)
Calculate the derivative
More Steps

Evaluate
dxd(5y)
Simplify
5×dxd(y)
Calculate
5dxdy
dx2d2y=(2x2−5x−x2y2)25dxdy×(2x2−5x−x2y2)−5y×dxd(2x2−5x−x2y2)
Calculate the derivative
More Steps

Evaluate
dxd(2x2−5x−x2y2)
Use differentiation rules
dxd(2x2)+dxd(−5x)+dxd(−x2y2)
Evaluate the derivative
4x+dxd(−5x)+dxd(−x2y2)
Evaluate the derivative
4x−5+dxd(−x2y2)
Evaluate the derivative
4x−5−2xy2−2x2ydxdy
dx2d2y=(2x2−5x−x2y2)25dxdy×(2x2−5x−x2y2)−5y(4x−5−2xy2−2x2ydxdy)
Calculate
More Steps

Evaluate
5dxdy×(2x2−5x−x2y2)
Apply the distributive property
5dxdy×2x2−5dxdy×5x−5dxdy×x2y2
Multiply the terms
10x2dxdy−5dxdy×5x−5dxdy×x2y2
Multiply the terms
10x2dxdy−25xdxdy−5dxdy×x2y2
Multiply the terms
10x2dxdy−25xdxdy−5x2y2dxdy
dx2d2y=(2x2−5x−x2y2)210x2dxdy−25xdxdy−5x2y2dxdy−5y(4x−5−2xy2−2x2ydxdy)
Calculate
More Steps

Evaluate
5y(4x−5−2xy2−2x2ydxdy)
Use the the distributive property to expand the expression
5y×4x+5y(−5)+5y(−2xy2−2x2ydxdy)
Multiply the terms
20yx+5y(−5)+5y(−2xy2−2x2ydxdy)
Multiply the terms
20yx−25y+5y(−2xy2−2x2ydxdy)
Multiply the terms
20yx−25y−10y3x−10y2x2dxdy
dx2d2y=(2x2−5x−x2y2)210x2dxdy−25xdxdy−5x2y2dxdy−(20yx−25y−10y3x−10y2x2dxdy)
Calculate
More Steps

Calculate
10x2dxdy−25xdxdy−5x2y2dxdy−(20yx−25y−10y3x−10y2x2dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10x2dxdy−25xdxdy−5x2y2dxdy−20yx+25y+10y3x+10y2x2dxdy
Add the terms
10x2dxdy−25xdxdy+5x2y2dxdy−20yx+25y+10y3x
dx2d2y=(2x2−5x−x2y2)210x2dxdy−25xdxdy+5x2y2dxdy−20yx+25y+10y3x
Use equation dxdy=2x2−5x−x2y25y to substitute
dx2d2y=(2x2−5x−x2y2)210x2×2x2−5x−x2y25y−25x×2x2−5x−x2y25y+5x2y2×2x2−5x−x2y25y−20yx+25y+10y3x
Solution
More Steps

Calculate
(2x2−5x−x2y2)210x2×2x2−5x−x2y25y−25x×2x2−5x−x2y25y+5x2y2×2x2−5x−x2y25y−20yx+25y+10y3x
Multiply the terms
More Steps

Multiply the terms
10x2×2x2−5x−x2y25y
Rewrite the expression
10x2×x(2x−5−xy2)5y
Cancel out the common factor x
10x×2x−5−xy25y
Multiply the terms
2x−5−xy210x×5y
Multiply the numbers
2x−5−xy250xy
(2x2−5x−x2y2)22x−5−xy250xy−25x×2x2−5x−x2y25y+5x2y2×2x2−5x−x2y25y−20yx+25y+10y3x
Multiply the terms
(2x2−5x−x2y2)22x−5−xy250xy−2x−5−xy2125y+5x2y2×2x2−5x−x2y25y−20yx+25y+10y3x
Multiply the terms
More Steps

Multiply the terms
5x2y2×2x2−5x−x2y25y
Rewrite the expression
5x2y2×x(2x−5−xy2)5y
Cancel out the common factor x
5xy2×2x−5−xy25y
Multiply the terms
2x−5−xy25xy2×5y
Multiply the terms
2x−5−xy225xy3
(2x2−5x−x2y2)22x−5−xy250xy−2x−5−xy2125y+2x−5−xy225xy3−20yx+25y+10y3x
Calculate the sum or difference
More Steps

Evaluate
2x−5−xy250xy−2x−5−xy2125y+2x−5−xy225xy3−20yx+25y+10y3x
Reduce fractions to a common denominator
2x−5−xy250xy−2x−5−xy2125y+2x−5−xy225xy3−2x−5−xy220yx(2x−5−xy2)+2x−5−xy225y(2x−5−xy2)+2x−5−xy210y3x(2x−5−xy2)
Write all numerators above the common denominator
2x−5−xy250xy−125y+25xy3−20yx(2x−5−xy2)+25y(2x−5−xy2)+10y3x(2x−5−xy2)
Multiply the terms
2x−5−xy250xy−125y+25xy3−(40x2y−100yx−20x2y3)+25y(2x−5−xy2)+10y3x(2x−5−xy2)
Multiply the terms
2x−5−xy250xy−125y+25xy3−(40x2y−100yx−20x2y3)+50xy−125y−25xy3+10y3x(2x−5−xy2)
Multiply the terms
2x−5−xy250xy−125y+25xy3−(40x2y−100yx−20x2y3)+50xy−125y−25xy3+20x2y3−50y3x−10x2y5
Calculate the sum or difference
2x−5−xy2200xy−250y−50y3x−40x2y+40x2y3−10x2y5
(2x2−5x−x2y2)22x−5−xy2200xy−250y−50y3x−40x2y+40x2y3−10x2y5
Multiply by the reciprocal
2x−5−xy2200xy−250y−50y3x−40x2y+40x2y3−10x2y5×(2x2−5x−x2y2)21
Multiply the terms
(2x−5−xy2)(2x2−5x−x2y2)2200xy−250y−50y3x−40x2y+40x2y3−10x2y5
Expand the expression
More Steps

Evaluate
(2x−5−xy2)(2x2−5x−x2y2)2
Evaluate the power
(2x−5−xy2)(4x4+25x2+x4y4−20x3−4x4y2+10x3y2)
Apply the distributive property
2x×4x4+2x×25x2+2x×x4y4−2x×20x3−2x×4x4y2+2x×10x3y2−5×4x4−5×25x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+2x×25x2+2x×x4y4−2x×20x3−2x×4x4y2+2x×10x3y2−5×4x4−5×25x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x×x4y4−2x×20x3−2x×4x4y2+2x×10x3y2−5×4x4−5×25x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−2x×20x3−2x×4x4y2+2x×10x3y2−5×4x4−5×25x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−2x×4x4y2+2x×10x3y2−5×4x4−5×25x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−8x5y2+2x×10x3y2−5×4x4−5×25x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−5×4x4−5×25x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the numbers
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−5×25x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the numbers
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−5×20x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the numbers
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−5×4x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the numbers
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−20x4y2)−5×10x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the numbers
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−20x4y2)−50x3y2−xy2×4x4−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−20x4y2)−50x3y2−4x5y2−xy2×25x2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−20x4y2)−50x3y2−4x5y2−25x3y2−xy2x4y4−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−20x4y2)−50x3y2−4x5y2−25x3y2−x5y6−(−xy2×20x3)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−20x4y2)−50x3y2−4x5y2−25x3y2−x5y6−(−20x4y2)−(−xy2×4x4y2)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−20x4y2)−50x3y2−4x5y2−25x3y2−x5y6−(−20x4y2)−(−4x5y4)−xy2×10x3y2
Multiply the terms
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4−(−100x3)−(−20x4y2)−50x3y2−4x5y2−25x3y2−x5y6−(−20x4y2)−(−4x5y4)−10x4y4
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
8x5+50x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4+100x3+20x4y2−50x3y2−4x5y2−25x3y2−x5y6+20x4y2+4x5y4−10x4y4
Add the terms
8x5+150x3+2x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4+20x4y2−50x3y2−4x5y2−25x3y2−x5y6+20x4y2+4x5y4−10x4y4
Add the terms
8x5+150x3+6x5y4−40x4−8x5y2+20x4y2−20x4−125x2−5x4y4+20x4y2−50x3y2−4x5y2−25x3y2−x5y6+20x4y2−10x4y4
Subtract the terms
8x5+150x3+6x5y4−60x4−8x5y2+20x4y2−125x2−5x4y4+20x4y2−50x3y2−4x5y2−25x3y2−x5y6+20x4y2−10x4y4
Subtract the terms
8x5+150x3+6x5y4−60x4−12x5y2+20x4y2−125x2−5x4y4+20x4y2−50x3y2−25x3y2−x5y6+20x4y2−10x4y4
Add the terms
8x5+150x3+6x5y4−60x4−12x5y2+60x4y2−125x2−5x4y4−50x3y2−25x3y2−x5y6−10x4y4
Subtract the terms
8x5+150x3+6x5y4−60x4−12x5y2+60x4y2−125x2−15x4y4−50x3y2−25x3y2−x5y6
Subtract the terms
8x5+150x3+6x5y4−60x4−12x5y2+60x4y2−125x2−15x4y4−75x3y2−x5y6
8x5+150x3+6x5y4−60x4−12x5y2+60x4y2−125x2−15x4y4−75x3y2−x5y6200xy−250y−50y3x−40x2y+40x2y3−10x2y5
dx2d2y=8x5+150x3+6x5y4−60x4−12x5y2+60x4y2−125x2−15x4y4−75x3y2−x5y6200xy−250y−50y3x−40x2y+40x2y3−10x2y5
Show Solution
